FINAL Environmental Assessment for a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina December 2008 #### **U.S.** Customs and Border Protection DEPARTMENT OF HOMELAND SECURITY U.S. CUSTOMS AND BORDER PROTECTION OFFICE OF INFORMATION AND TECHNOLOGY LABORATORIES AND SCIENTIFIC SERVICES INTERDICTION TECHNOLOGY BRANCH #### **FINAL** # Environmental Assessment for a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina # DEPARTMENT OF HOMELAND SECURITY U.S. CUSTOMS AND BORDER PROTECTION OFFICE OF INFORMATION AND TECHNOLOGY LABORATORIES AND SCIENTIFIC SERVICES INTERDICTION TECHNOLOGY BRANCH #### December 2008 Lead Agency: U.S. Department of Homeland Security U.S. Customs and Border Protection Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch 1300 Pennsylvania Ave., N.W. Washington, DC 20229 Point of Contact: Ms. Sharon Sharp-Harrison Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch 1300 Pennsylvania Avenue NW, Suite 1575 Washington, DC 20229 ### **U.S. Department of Homeland Security** Washington, DC 20229 December 1, 2008 Subject: Notice of Availability of Finding of No Significant Impact and Final Environmental Assessment Establishing a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina Dear Reader, U.S. Customs and Border Protection (CBP), Office of Information and Technology (OIT), Laboratories and Scientific Services (LSS), Interdiction Technology Branch (ITB) has prepared a Final Environmental Assessment (FEA) to address the potential effects of establishing a High Energy Mobile X-Ray Inspection System (HEMXRIS) at the Port of Charleston, Charleston County, South Carolina. The purpose of the Proposed Action is to enable CBP to conduct non-intrusive inspections of high-density cargo containers for contraband such as illicit drugs, currency, guns, and weapons of mass destruction. Through the development of the FEA, it has been determined that a Finding of No Significant Impact (FONSI) will result from implementation of the Proposed Action. A draft environmental assessment was published and made available for 30 days to the public for review and comment beginning September 5, 2008. A notice of availability of the draft environmental assessment was published in the Baltimore Sun newspaper. All comments received and accepted during the public review period were given consideration in this FEA and FONSI Environmental Assessment for a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina U.S. Customs and Border Protection Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch Background: The United States (U.S.) Customs and Border Protection (CBP), a component within the Department of Homeland Security (DHS), helps to guard the borders of the U.S. CBP's mission is to ensure all goods and persons entering and exiting the U.S. do so in compliance with all U.S. laws and regulations. CBP has the responsibility to regulate and control the borders against illegal entrants, terrorists' entry, illegal drugs and other contraband. This mission is accomplished primarily through physical inspection of cargo, conveyances, and persons as they enter the country. To improve the inspection process, CBP continuously seeks technological solutions that are safe for both humans and the environment, and are cost effective. A method of conducting inspections involves the use of Non-Intrusive Inspection (NII) equipment based on technologies such as X-ray or gamma radiation sources to "see" into cargo containers to identify potential contraband. The NII technologies allow CBP officers to inspect for contraband without having to physically enter into or unload motor vehicles or containers. CBP has examined High Energy Mobile X-Ray Inspection Systems (HEMXRIS) for their suitability as part of CBP's NII program. Purpose and Need: The purpose of the Proposed Action is the fielding and operation of a HEMXRIS to meet the need for high density penetration NII systems identified in (1) The Office of National Drug Control Policy (ONDCP) National Drug Control Strategy; (2) The ONDCP Ten Year Counterdrug Technology Plan and Development Roadmap; (3) CBP Container Security Initiative; (4) National Security Presidential Directive — 17/Homeland Security Presidential Directive — 4 National Strategy to Combat Weapons of Mass Destruction; (5) National Security Presidential Directive — 43/Homeland Security Presidential Directive — 14 Domestic Nuclear Detection; (6) U.S. Customs and Border Protection 2005-2010 Strategic Plan and (7) The SAFE Ports Act of 2006. Alternatives: Two alternatives were addressed in this environmental assessment (EA): - 1. Fielding and Operation of a HEMXRIS - 2. The No Action Alternative. **Proposed Action:** The Proposed Action is to field and operate a Heimann Cargo Vision Mobile (HCVM) HEMXRIS for the purpose of conducting NII of high density cargo containers entering the United States. The system will be moved to any previously disturbed paved areas within the port suitable for conducting inspections as required. There is no additional construction or infrastructure required for the operation or storage of the system. No Action Alternative: The No Action Alternative is the status quo, to visually, and by using existing equipment and methods, inspect the cargo containers for the presence of persons or indications of the presence of contraband. If the CBP officer detects or believes that persons or contraband may be present, the container is directed to an area designated for the manual offloading and inspection of cargo. Although the No Action Alternative does not meet the purpose and need, it serves as a basis of comparison to the Proposed Action and other alternatives. Environmental Assessment for a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina Other Alternatives Considered: Three additional alternatives were found to be reasonable for providing CBP with the capability to inspect containers with high-density cargoes. - Mid-Energy X-Ray Inspections Systems (0.25 < 2 MeV); - Gamma Imaging Inspection Systems (Cs¹³⁷/Co⁶⁰) - Conducting inspection of containers at a dedicated cargo inspection facility at another location other than the marine terminal. Each of the alternatives was evaluated on its ability to provide the required functional capability to support CBP's mission. Alternative (3), Mid-Energy X-Ray Inspection Systems, and Alternative (4), Gamma Imaging Inspection Systems, were determined to not be functionally viable in meeting the mission requirement for penetration of high-density cargo and therefore were not carried forward for detailed analyses. Alternative (5) was not carried forward for detailed analysis due to specific language in the SAFE Ports Act requiring the use of non-intrusive imaging equipment in tandem with radiation detection equipment. Additionally, the SAFE Ports Act requires that 100% of the containers that have been identified as high-risk are scanned before such containers leave a United States seaport facility. Environmental Effects: The EA documents that the Proposed Action will result in no significant environmental impacts, direct, indirect, cumulative or otherwise. Climate - The Proposed Action will not have an adverse effect on the climate. Geology and Soils – No construction or excavation is required for the Proposed Action. The system is mobile and can be moved as needed. Scattered X-radiation will not contaminate soils because it is energy which dissipates as soon as the source is turned off, just as a room becomes dark as soon as the light switch is turned off. No direct impacts to geology and soils would occur from the implementation of the Proposed Action. Hydrology and Water Quality - The Proposed Action will not affect hydrology, water resources or water quality. **Floodplains** – According to FEMA, all of the port's terminals are located in 100 year floodplains (FEMA 2004). The Proposed Action will not have an impact on any floodplain. Wetlands - The Proposed Action will occur on previously paved surfaces and will not impact any wetlands. Coastal Zone – The port is located in the South Carolina Coastal Zone. The Proposed Action is consistent with current actions at the port. No coastal zone resources will be adversely affected by the Proposed Action. Vegetation and Wildlife - The Proposed Action will occur on previously paved surfaces and will be consistent with current actions at the port. No vegetation or wildlife will be impacted by the Proposed Action. Threatened and Endangered Species – The Proposed Action will take place in paved, industrial areas where suitable wildlife habitat and species does not exist. The Proposed Action will have no effect on threatened or endangered species. Environmental Assessment for a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina Air Quality – Charleston County is in attainment for all criteria pollutants (EPA 2008a). Emissions estimates have shown potential emissions resulting from the Proposed Action to be substantially lower than the state and federal requirements for this area. Conformity analysis conducted in accordance with 40 CFR 93, Subpart B, shows emissions for these criteria to be de minimis. No long-term air quality impacts would occur. Impacts to air quality were found to not be significant (See Appendix B). Noise – The Proposed Action is consistent with current actions at the port and will not measurably change the existing noise environment or exceed any noise limit requirements. As a result, the Proposed Action will not have a significant noise impact.
Land Use and Zoning – The Proposed Action is consistent with current actions at the port and will not impact land use or zoning. Aesthetics and Visual Resources – The Proposed Action would not obscure or result in abrupt changes to the complexity of the landscape and skyline when viewed from points readily accessible to the public. No long-term change to the character of the area would occur as a result of the Proposed Action. Infrastructure and Utilities - The port has pre-existing water and electrical services. The Proposed Action will not impact the infrastructure and utility services of the port. **Traffic and Transportation** — During the planning process for each NII system and prior to deployment, site surveys are conducted, and appropriate coordinations are made to ensure that the placement and operation of systems are integrated with port traffic patterns and facilities to minimize delays to legitimate transportation. Waste Management – Wastes associated with the Proposed Action are used oil and lubricants for the operation and maintenance of the HEMXRIS. These will be accumulated and stored in compliance with applicable regulations at or near the point of generation and recycled by a licensed used oil recycler. 40 CFR Part 279 exempts used oil and lubricants from regulation as a hazardous waste if they are recycled and not mixed with any other hazardous wastes. It is not anticipated that the operation and maintenance of the system will generate amounts of hazardous wastes that would have any affect on the port's current generator status. There is no radioactive source or byproduct material used in the system, therefore there is no risk of a release of radioactive materials. If the system or system component is replaced or decommissioned, the handling, storage, use, transfer, and disposal of all materials will comply with applicable regulations. This will prevent human exposure and releases to the environment of any hazardous material that could potentially be within the system. Historical and Archeological (Cultural) Resources – The HEMXRIS will be operated in an industrial setting and will not have an impact on sites which are listed on, or potentially eligible for listing on, the National Register of Historic Places. There is no construction or excavation related to the Proposed Action. Implementing the Proposed Action will not have a significant impact on cultural or historic resources. Environmental Assessment for a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina Socioeconomics – The Proposed Action will not affect employment, housing or demographics. Implementation of the Proposed Action may produce indirect socioeconomic effects by deterring the movement of illicit drugs, explosives, firearms, or other contraband into the U.S. Similar indirect effects could result if the Proposed Action led to the apprehension of criminals or terrorists attempting to enter the U.S. Such effects, however, are only theoretical and will not be further evaluated in this document. Environmental Justice – Implementation of the Proposed Action is not expected to have any negative or disproportionate effects on minority and low income populations or children. Irreversible and Irretrievable Commitment of Resources – The irreversible and irretrievable commitment of resources associated with the Proposed Action will be materials, utilities, labor and time expended in the operation of the HEMXRIS. Radiological Health and Safety – While the use of any NII screening system must be evaluated to ensure that there are no adverse impacts to the health and safety of the public, CBP officers, and port employees, HEMXRISs are designed and operated to avoid these impacts. As promulgated by the Nuclear Regulatory Commission (NRC) in 10 CFR Part 20, the maximum permissible level of radiation dose to the general public is 0.1 rem in a year. This same standard has been adopted by the State of South Carolina. As explained more fully below in section 3.3, of the EA, CBP will use this protective limit for the public and CBP employees and other port workers. Best Management Practices: CBP is responsible to ensure full compliance with all best management practices as identified herein. - Best Management Practices for Air To reduce emissions from the Proposed Action, cargo container handling equipment waiting for the inspection of containers by the HEMXRIS will follow federal and state regulations regarding the control of idling times. The HEMXRIS is a 2006-2007 model vehicle that includes the Best Available Control Technology as defined by the U.S. Environmental Protection Agency (EPA). - Best Management Practices for Wastes Petroleum, oils, and lubricants will be stored, handled, and disposed of in compliance with applicable laws and regulations. Procedures for the safe refueling of HEMXRISs and for the containment and clean-up of potential spills will be in accordance with existing port procedures for preventing and controlling releases. CBP personnel will be trained in spill prevention and countermeasures as required by the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. §6901, et seq.) and the Oil Pollution Act of 1990 (OPA) (33 U.S.C §2701 et seq.) Best Management and Mitigation Measures for Radiological Health and Safety - Best management practices for radiological health and safety include but are not limited to: - Incorporation of safety warnings and precautions into technical manuals and operator manuals. - Training of operators and screening operations supervisors in the hazards associated with radiation producing equipment. - Incorporation of radiation safety engineering controls (E-Stops) on the equipment. - Training operators and screening operations supervisors in the location and use of radiation safety engineering controls (E-Stops). Environmental Assessment for a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina Mitigation measure for Radiological Health and Safety include; • The establishment of radiation controlled areas during screening operations. "Controlled area" is defined by 10 CFR 20.1003 as "an area, outside of a restricted area but inside the site boundary, access to which can be limited by the licensee for any reason." In order to limit the cumulative radiation dose to no more than 0.00005 rem in any one hour, CBP will establish controlled areas for the HEMXRIS. CBP has elected to use the term "controlled area" rather than "restricted area" because the screening systems are not in continuous screening mode. Further, "restricted area" traditionally has other uses at the port and does not accurately describe the level of caution that the NRC and CBP desires to communicate to the public. The combination of these precautions will ensure that the cumulative radiation dose to CBP officers and the general public will not exceed 0.00005 rem in any one hour or 0.1 rem per year. Long Term Requirements: The HEMXRIS will be placed with the involvement and the approval of the CBP Radiation Safety Officer to ensure that CBP employees, port personnel and the public are all protected. This is accomplished through radiation survey acceptance tests by the vendors and CBP to ensure the equipment meets the established CBP requirements and limits. CBP personnel will not perform any maintenance of the linac or the X-ray source enclosure. CBP personnel will periodically perform maintenance of the detectors and test the system using procedures described in the Operator's Manual. Non-routine linac and X-ray source maintenance will be performed by the manufacturers. The personnel assigned to operate the systems will be specifically trained for safe X-radiation system operations according to CBP Office of Training and Development standards. Training for the HEMXRIS operators will consist of lectures, courses and a written examination in basic radiation physics, radiation safety, biological effects of radiation, instrumentation, radiation control and operating procedures during normal and emergency conditions. Cumulative Impact: As part of a complimentary mix of technologies, CBP operates presently, or plans to operate in the near future, other NII technologies suited to the various inspection needs at the port. In the event other NII technologies are present or planned for operation at the port, CBP will ensure that controlled areas for each technology are adequately designated and do not overlap with one another. Cumulative emission estimates for the other NII were made based on similar assumptions as the HEMXRIS, and the processing speeds of each system. The addition of the HEMXRIS has not been found to significantly increase the level of air emissions at the Port. As with these systems, the HCVM and associated radiation controlled areas will be separated from other NII operating areas, adjacent structures, work areas and traffic flows to protect workers, the general public and contents of adjacent buildings. If new NII equipment is added to the port, it will be separated from adjacent structures, work areas and traffic flows to protect employees, the general public and contents of adjacent buildings. The amount and type of radioactive material used and radiation generated will define the controlled area around each NII site. The controlled areas would not overlap. By controlling access to these controlled areas, CBP will ensure that radiation exposure is kept as low as possible and is not cumulative in its effects. Environmental Assessment for a High Energy Mobile X-Ray Inspection System at the Port of Charleston, Charleston County, South Carolina Finding: The analysis of effects contained in the EA considered both the context and intensity of the action in determining its significance as outlined in 40 CFR 1508.27. For each resource evaluated, a discussion of the "Criteria for Significance" is provided to assist the
reader in understanding the significance thresholds used in analysis. Based upon the analysis in the EA, it is determined that the Proposed Action will not significantly affect the human environment. Consequently, the Proposed Action does not require the preparation of an Environmental Impact Statement. Mr. Ira 8. Reese Executive Director Laboratories and Scientific Services Office of Information and Technology U.S. Customs and Border Protection Date 11-4-08 11/14/03 Mr. Oregory L. Giddens Executive Director Facilities Management and Engineering Date #### **Executive Summary** #### Introduction This Environmental Assessment (EA) addresses the potential environmental effects, beneficial and adverse, of the fielding and operation of one High Energy Mobile X-Ray Inspection System (HEMXRIS) by the U.S. Customs and Border Protection (CBP) at the Port of Charleston, Charleston County, South Carolina. This EA satisfies the requirements specified in the National Environmental Policy Act of 1969 (NEPA) as amended, the Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508), and Department of Homeland Security (DHS) Management Directive 5100.0, Environmental Planning Program (71 FR 16790-16820, April 4, 2006). NEPA requires CBP and other federal agencies to fully understand, and take into consideration during decision making, the environmental consequences of proposed federal actions. HEMXRISs, which are part of a comprehensive mix of technologies designed to complement one another and present a layered defense to smuggling attempts, allow CBP officers to inspect for contraband without having to physically enter into or unload cargo containers. Congressionally funded and directed, HEMXRISs fulfill Non-Intrusive Inspection (NII) technology requirements found in (1) The Office of National Drug Control Policy (ONDCP) National Drug Control Strategy; (2) The Office of National Drug Control Policy (ONDCP) Ten Year Counterdrug Technology Plan and Development Roadmap; (3) CBP Container Security Initiative; (4) National Security Presidential Directive — 17/Homeland Security Presidential Directive; 4 National Strategy to Combat Weapons of Mass Destruction; (5) National Security Presidential Directive — 43/Homeland Security Presidential Directive — 14 Domestic Nuclear Detection; (6) U.S. Customs and Border Protection 2005-2010 Strategic Plan and (7) The Security and Accountability For Every Port Act of 2006. #### **Purpose and Need** The purpose of the Proposed Action is the fielding and operation of one HEMXRIS at the port to conduct NIIs of high-density cargo containers for contraband such as illicit drugs, currency, guns, and weapons of mass destruction. For the purposes of this environmental analysis, high-density cargoes and containers are defined as having a density greater than 6 inches of steel. The need of the Proposed Action is to assist in fulfilling the requirement for the 100% scanning of containers entering the United States as directed in the Security and Accountability For Every (SAFE) Port Act of 2006 (H.R. 4954). Because of the sheer volume of sea container traffic and the opportunities it presents for terrorists, containerized shipping is uniquely vulnerable to terrorist attack. During 2007, the Port of Charleston was ranked as the 11th busiest container port in North America, having 1,005,752 containers pass the port during that year (AAPA 2008). In order to effectively inspect high-density cargoes and containers, NII candidates must be able to provide penetration of greater than 6 inches of steel. i #### **Proposed Action and Alternatives Considered** Under NEPA, the proponent for an action is responsible for considering a reasonable range of alternatives that could accomplish the agency's objectives. If alternatives were eliminated from detailed study, reasons for their elimination must be briefly discussed. Two alternatives were evaluated based upon their ability to provide the required operational capacities identified in the purpose and need statement. The two alternatives considered were: - 1. Fielding and Operation of a HEMXRIS - 2. The No-Action Alternative Fielding and operation of the HEMXRIS was chosen as the preferred alternative and is presented as the Proposed Action. #### **Proposed Action** The Proposed Action consists of the fielding and operation of one HEMXRIS at the Port of Charleston for the purpose of conducting NIIs of high-density cargo containers. The model chosen for deployment is the Heimann Cargo Vision-Mobile (HCVM). The system will be moved to any previously disturbed paved areas within the port suitable for conducting inspections as required. The system is discussed in section 1.5. There is no additional construction or infrastructure required for the operation or storage of the system. #### No Action Alternative The No Action Alternative is to continue to inspect cargo containers entering the United States at the Port of Charleston with existing equipment and methods. This inspection process involves visual and manual inspection with a limited number of tools such as alternative NII technology. This approach is not as efficient and effective at detecting the range of materials which could be detected with HEMXRISs in addition to current inspection techniques. Furthermore, it would not reduce the need for CBP officers to enter potentially dangerous situations to carry out these inspections. Although the No Action Alternative does not meet the purpose and need, it serves as a basis of comparison to the Proposed Action. #### Other Alternatives Considered Three additional alternatives were found to be reasonable for providing CBP with the capability to inspect containers with high-density cargoes. - 3. Mid-Energy X-Ray Inspections Systems (0.25 < 2 MeV); - 4. Gamma Imaging Inspection Systems (¹³⁷Cs/⁶⁰Co) - 5. Conducting inspection of containers at a dedicated cargo inspection facility at another location other than the port. Each of the alternatives was evaluated on its ability to provide the required functional capability to support CBP mission. Alternative (3), Mid-Energy X-Ray Inspection Systems, and Alternative (4), Gamma Imaging Inspection Systems, were determined to not be functionally viable in meeting the mission requirement for penetration of high-density cargo and therefore were not carried forward for detailed analyses. Alternative (5) was not carried forward for detailed analysis due to specific language in the SAFE Port Act requiring the use of non-intrusive imaging equipment in tandem with radiation detection equipment. Additionally, the SAFE Port Act requires that 100 percent of the containers that have been identified as high-risk are scanned before such containers leave a United States seaport facility # **Environmental Consequences of the Proposed Action and Alternatives** This EA documents that the Proposed Action will result in no significant environmental impacts, direct, indirect, cumulative or otherwise. The Port of Charleston is located in Charleston County, South Carolina. The port operates several terminals along the Charleston Harbor and Wando and Cooper rivers. **Climate** – The Proposed Action will not have an adverse effect on the climate. Geology and Soils – No construction or excavation is required for the Proposed Action. The system is mobile and can be moved as needed. Scattered X-radiation will not contaminate soils because it is energy which dissipates as soon as the source is turned off, just as a room becomes dark as soon as the light switch is turned off. No direct impacts to geology and soils would occur from the implementation of the Proposed Action. **Hydrology and Water Quality** – The Proposed Action will not affect hydrology, water resources or water quality. **Floodplains** – According to FEMA, all of the port's terminals are located in 100 year floodplains (FEMA 2004). The Proposed Action will not have an impact on any floodplain. **Wetlands** – The Proposed Action will occur on previously paved surfaces and will not impact any wetlands. **Coastal Zone** – The port is located in the South Carolina Coastal Zone. The Proposed Action is consistent with current actions at the port. No coastal zone resources will be adversely affected by the Proposed Action. **Vegetation and Wildlife** – The Proposed Action will occur on previously paved surfaces and will be consistent with current actions at the port. No vegetation or wildlife will be impacted by the Proposed Action. **Threatened and Endangered Species** – The Proposed Action will take place in paved, industrial areas where suitable wildlife habitat and species does not exist. The Proposed Action will have no effect on threatened or endangered species. **Air Quality** – Charleston County is in attainment for all criteria pollutants (EPA 2008a). Emissions estimates have shown potential emissions resulting from the Proposed Action to be substantially lower than the state and federal requirements for this area. Conformity analysis conducted in accordance with 40 CFR 93, Subpart B, shows emissions for these criteria to be *de minimis*. No long-term air quality impacts would occur. Impacts to air quality were found to not be significant (See Appendix B). **Noise** – The Proposed Action is consistent with current actions at the port and will not measurably change the existing noise environment or exceed any noise limit requirements. As a result, the Proposed Action will not have a significant noise impact. **Land Use and Zoning** – The Proposed Action is consistent with current actions at the port and will not impact land use or zoning. **Aesthetics and Visual Resources** – The Proposed Action would not obscure or result in abrupt changes to the complexity of the landscape and skyline when viewed from points readily accessible to the public. No long-term change to the character of the area would occur as a result of the Proposed Action. **Infrastructure and Utilities**
– The port has pre-existing water and electrical services. The Proposed Action will not impact the infrastructure and utility services of the port. **Traffic and Transportation** – During the planning process for each NII system and prior to deployment, site surveys are conducted, and coordinations with the appropriate stakeholders are made to ensure that the placement and operation of systems are integrated with port traffic patterns and facilities to minimize delays to legitimate transportation. **Waste Management** – Wastes associated with the Proposed Action are used oil and lubricants for the operation and maintenance of the HEMXRIS. These will be accumulated and stored in compliance with applicable regulations at or near the point of generation and recycled by a licensed used oil recycler. 40 CFR Part 279 exempts used oil and lubricants from regulation as a hazardous waste if they are recycled and not mixed with any other hazardous wastes. It is not anticipated that the operation and maintenance of the system will generate amounts of hazardous wastes that would have any affect on the port's current generator status. There is no radioactive source or byproduct material used in the system, therefore there is no risk of a release of radioactive materials. If the system or system component is replaced or decommissioned, the handling, storage, use, transfer, and disposal of all materials will comply with applicable regulations. This will prevent human exposure and releases to the environment of any hazardous material that could potentially be within the system. **Historical and Archeological (Cultural) Resources** – The HEMXRIS will be operated in an industrial setting and will not have an impact on sites that are listed on, or potentially eligible for listing on, the National Register of Historic Places. There is no construction or excavation related to the Proposed Action. Implementing the Proposed Action will not have a significant impact on cultural or historic resources. **Socioeconomics** – The Proposed Action will not affect employment, housing or demographics. Implementation of the Proposed Action may produce indirect socioeconomic effects by deterring the movement of illicit drugs, explosives, firearms, or other contraband into the U.S. Similar indirect effects could result if the Proposed Action led to the apprehension of criminals or terrorists attempting to enter the U.S. Such effects, however, are only theoretical and will not be further evaluated in this document. **Environmental Justice** – Implementation of the Proposed Action is not expected to have any negative or disproportionate effects on minority and low income populations or children. **Irreversible and Irretrievable Commitment of Resources** – The irreversible and irretrievable commitment of resources associated with the Proposed Action will be materials, utilities, labor and time expended in the operation of the HEMXRIS. **Radiological Health and Safety** – While the use of any NII screening system must be evaluated to ensure that there are no adverse impacts to the health and safety of the public, CBP officers, and port employees, HEMXRISs are designed and operated to avoid these impacts. As promulgated by the Nuclear Regulatory Commission (NRC) in 10 CFR Part 20, the maximum permissible level of radiation dose to the general public is 0.1 rem in a year. This same standard has been adopted by the State of South Carolina. As explained more fully below in section 3.3, CBP will use this protective limit for the public and CBP employees and other port workers. HEMXRIS Occupants – HEMXRISs are designed so that the radiation dose levels within the driver's cab and at the inspector work-stations (system operators) will be below CBP prescribed limits of 0.1 rem in a year. Detailed radiation surveys, conducted on HEMXRISs deployed at other ports and performed by or under the supervision of the CBP Radiation Safety Office, have confirmed that these design criteria have been met. In all test cases, exposures were measured using a "worst-case" scatter in the X-ray beam. Furthermore, since such a worst-case scatter scenario is not likely to occur, these estimated exposure levels are conservative by a substantial amount. As an additional precaution, as the system is delivered, exposure measurements will be made in all cabs and work-station areas to ensure that the system is in compliance with exposure limits. CBP Officers and Port Employees – Due to the nature of their work, CBP officers and port employees who work around HEMXRISs have the potential to be "occupationally exposed" to radiation. The NRC and the Occupational Safety and Health ¹ As defined by the International Commission on Radiological Protection (ICRP) (ICRP 2007) Administration (OSHA) allow a higher permissible exposure level ("occupational dose") for radiation workers in restricted areas (5 rem) in a year, but CBP has elected to use the general public protection standard of 0.1 rem in a year as the maximum permissible level of radiation dose for CBP officers and port employees (50 times more stringent than occupational dose limits). The radiation dose from the HEMXRIS will be no more than 0.00005 rem in any one hour since personnel will stand behind a marker delineating a "controlled area." An analysis of potential exposure was based on 2,000 work hours per year as the maximum exposure time. This assumes that an individual spends all of a forty-hour work week, every week of the year, standing at the boundary of a system's controlled area. Even under those circumstances, neither CBP officers nor port employees will experience a cumulative dose greater than the NRC limit for protecting the general public. Controlled Area – The HCVM has two settings for operation, 3.8 MeV and 4.2 MeV. The dimensions for the HCVM operating at 3.8 MeV are 110 feet in length and 82 feet in width as depicted in Figure 3. The dimensions for the controlled area for HCVM operating at 4.2 MeV are 135 feet in length and 133 feet in width as depicted in Figure 4. In the extreme, a system operator (or a member of the general public) could be situated at the edge of the controlled area 8 hours a day, every workday of the year (that is to say, 2,000 hours per year) and not receive more than the limits prescribed by the NRC and the State of South Carolina (0.1 rem per year). The controlled area ensures that the system conforms to the radiation protection guidelines of reducing the radiation levels to As Low as is Reasonably Achievable (ALARA). ALARA is defined in 10 CFR 20.1003 as: "... means making every reasonable effort to maintain exposures to radiation as far below the dose limits in this part as is practical consistent with the purpose for which the licensed activity is undertaken, taking into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, and other societal and socioeconomic considerations, and in relation to utilization of nuclear energy and licensed materials in the public interest." In addition, 10 CFR 20.1101(b) requires that: "[t]he licensee shall use, to the extent practical, procedures and engineering controls based upon sound radiation protection principles to achieve occupational doses and doses to members of the public that are as low as is reasonably achievable (ALARA)." Controlled areas are calculated and verified for each NII system and are designed to provide adequate separation from other NII operating areas, adjacent structures, work areas and traffic flows to protect workers, the general public and contents of adjacent buildings. Analysis and testing for this Environmental Assessment shows that exposures are expected to be well below the maximum levels of exposure set by the NRC and State of South Carolina (0.1 rem per year) to protect workers and the general public; therefore, the health and safety impacts from radiological exposure for the Proposed Action were found to not be significant. See section 3.3 for further discussion of radiological health and safety. # **Summary of Best Management Practices and Mitigation Actions Planned** **Best Management Practices for Air** – To reduce emissions from the Proposed Action, cargo container handling equipment waiting for the inspection of containers by the HEMXRIS will follow federal and state regulations regarding the control of idling times. The HEMXRIS is a 2006-2007 model vehicle that includes the Best Available Control Technology as defined by the U.S. Environmental Protection Agency (EPA). **Best Management Practices for Wastes** – Petroleum, oils, and lubricants will be stored, handled, and disposed of in compliance with applicable laws and regulations. Procedures for the safe refueling of HEMXRISs and for the containment and clean-up of potential spills will be in accordance with existing port procedures for preventing and controlling releases. CBP personnel will be trained in spill prevention and countermeasures as required by the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. §6901, *et seq.*) and the Oil Pollution Act of 1990 (OPA) (33 U.S.C §2701 *et seq.*) HEMXRISs might contain materials that could be hazardous if the materials are handled improperly. An example of such a material would be lead metal, which is used for radiation shielding. As a system component, the lead will be innocuous and will provide a protective function from ionizing radiation. As a CBP asset, all materials within the system will be in use for their intended purpose, under the supervision of appropriately trained personnel. Under this scenario, there is no hazard to the human environment because the materials will be contained within the system as functional components of the system. In the event of an accident, hazardous materials would not be expected to cause any significant harm to the human environment,
because the amount of materials is small, and most materials will be in solid form which would be readily contained and recovered. Accident response procedures are in place at the port to contain and remove fluids such as lubricants and fuel. The most important action to ensure that hazardous materials have no significant effect on the human environment will be upon the replacement or decommissioning of a component or system. Appropriate disposition will depend upon type and quantity of materials involved and the applicable regulations. If a component is replaced or decommissioned, the handling, storage, use, transfer, and disposal of all materials will comply with applicable regulations. This will prevent human exposure and releases to the environment of any hazardous material. **Best Management Practices and Mitigation Measures for Radiological Health and Safety** – Best management practices for radiological health and safety include but are not limited to: - Incorporation of safety warnings and precautions into technical manuals and operator manuals. - Training of operators and screening operations supervisors in the hazards associated with radiation producing equipment. - Incorporation of radiation safety engineering controls (E-Stops) on the equipment. - Training operators and screening operations supervisors in the location and use of radiation safety engineering controls (E-Stops). - The establishment of radiation controlled areas during screening operations. The combination of these precautions will ensure that the cumulative radiation dose to Officers and the general public will not exceed 0.00005 rem in any one hour or 0.1 rem per year. #### **Cumulative Impacts** Cumulative impact is defined by the Council on Environmental Quality in 40 CFR 1508.7 as the impact on the environment that results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or non-federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time. The following relevant issues were analyzed for potential cumulative effects. #### **Air Quality** Cumulative emissions for planned and potential future NII were found not to be significant (see Appendix B). All CBP NII vehicles currently meet the EPA emission standards. These findings are documented in Appendix B. Although terminal equipment is required to move cargo containers to and from the inspection area, it doesn't necessarily follow that the movement of containers for inspection results in a significant increase in emissions. In the aggregate, the emissions are "emissions neutral" in that cargo handling equipment is not exclusively used for the movement of containers for inspection. Cargo handling equipment is also used to rearrange containers to make space when new containers arrive and to move items from one area of the port to another area for various reasons. Past, present and foreseeable actions of the port related to air quality will likely result in the control and/or reduction of port related emissions and improvement of air quality. Planned expansions of the port and potential additions of NII systems could result in additional emissions in the future. However, this will take place in the context of ongoing emissions reductions efforts by the port and regulatory actions. Therefore, future port growth and NII deployments are not expected to result in significant, cumulative air quality effects. #### **Radiological Health and Safety** Aside from NII equipment operated or proposed by CBP, there is no other known NII equipment at the port that could combine with the proposed action and cause a significant cumulative effect. NII equipment has little potential to create cumulative health impacts under normal operating conditions when they are used for their intended purpose by qualified personnel under the supervision of a radiation safety officer in accordance with applicable heath and safety regulations. Controlled areas are calculated and verified for each NII system and are designed to provide adequate separation from other NII operating areas, adjacent structures, work areas and traffic flows to protect workers, the general public and contents of adjacent buildings. Limiting access to the controlled areas ensures that the public (which includes system operators and port personnel) are not exposed to radiation levels exceeding those prescribed by state and federal regulations (see Appendix C and Appendix D). In the event other NII technologies are present or planned for operation at the port, CBP will ensure that controlled areas for each technology are adequately designated and do not overlap with one another. The HEMXRIS and associated controlled area will occupy a maximum of 17,955 square feet of space on the port during operations (this includes the deployed system and necessary controlled area). The placement of this system combines with placement of other proposed and existing NII systems to occupy a total maximum (if all NII systems operate simultaneously) of 25,755 square feet of port space. The port has adequate space to accommodate the proposed NII system and existing and planned systems. Controlled area dimensions may be adjusted when needed by using cargo containers as a backstop, or by using masonry walls. The controlled area would only be adjusted under the supervision of the CBP Radiation Safety Officer in order to maintain the radiation exposure limit of 0.00005 rem in any one hour limit or 0.1 rem per year. #### **Findings and Conclusions** The evaluation of the Proposed Action, fielding and operation of one HEMXRIS at the Port of Charleston, demonstrates that there will be no significant, adverse effects on the human environment as long as identified best management practices and mitigation measures are followed. Therefore, no further environmental impact analysis is warranted. ### **Table of Contents** | E | xecutive Summary | i | |---|--|-----| | | Introduction | | | | Purpose and Need | | | | Proposed Action and Alternatives Considered | ii | | | Proposed Action | ii | | | No Action Alternative | ii | | | Other Alternatives Considered | | | | Environmental Consequences of the Proposed Action and Alternatives | | | | Summary of Best Management Practices and Mitigation Actions Planned | vii | | | Cumulative Impacts | | | | Findings and Conclusions | | | 1 | Introduction | 1 | | | 1.1 Background | 1 | | | 1.2 Purpose and Need | | | | 1.3 Public Involvement | | | | 1.4 Framework for Analysis | | | | 1.5 Description of the HEMXRIS | | | | 1.5.1 Detector and Source Boom Assembly | | | | 1.5.2 Imaging System | | | | 1.5.3 Radiation Safety Features | | | 2 | The Proposed Action and Alternatives | | | | 2.1 Alternative 1 – Proposed Action | | | | 2.2 Alternative 2 – No Action Alternative | | | | 2.3 Other Alternatives Considered | | | 3 | The Affected Environment and Consequences | | | | 3.1 Preliminary Impact Scoping | | | | 3.2 Air Quality | | | | 3.2.1 Criteria for Significance | | | | 3.2.2 Baseline Environment | | | | 3.2.3 Potential Consequences | | | | 3.3 Radiological Health and Safety | | | | 3.3.1 Criteria for Significance | | | | 3.3.2 Baseline Environment | | | 1 | 3.3.3 Potential Consequences | | | 4 | Cumulative Impacts | | | | · · · · · · · · · · · · · · · · · · · | | | | 4.2 Reasonably Foreseeable Actions that Could Interact with the Proposed Acand Alternative | | | | 4.3 Summary of Cumulative Effects | | | | | | | | 4.3.1 Air Quality | | | 5 | Findings and Conclusions | | | J | 5.1 Environmental Consequences of the Proposed Action and Alternatives | | | | 5.2 Summary of Best Management Practices and Mitigation Actions Planned | | | | 5.2 Sammary of Dest Management Fractices and Minigation Actions Framina | 50 | | 5.3 Findings and Conclusions | 32 | |--|----| | 6 References | 33 | | 7 Persons and Organizations Contacted | 36 | | 8 Acronyms and Abbreviations | 37 | | 9 List of Preparers | | | 10 Distribution List | 40 | | Appendix A: Correspondence | 43 | | Appendix B: Air Quality Analysis | | | Appendix C: Background Information on Ionizing Radiation | 60 | | Appendix D: Background Information Concerning Risks from Occupational Ra | | | Exposure | | | Appendix E: Notice of Availability | 78 | | Appendix F: Response to Public Comments | 80 | | List of Figures Figure 1: HCVM (Stowed Configuration) | | | Figure 3: HCVM Controlled Area for Operation at 3.8 MeV | | | Figure 4: HCVM Controlled Area for Operation at 4.2 MeV | 9 | | Figure 5: Location of Water Bottles and Dosimetry Badges | 21 | | List of Tables | | | Table 1: Preliminary Impact Scoping | | | Table 2: Dosimetry Results. | | | Table 3: Emissions Estimate from Proposed, Existing and Future Operations ¹ | 56 | | Table 4: Conformity Criteria for Nonattainment Areas | | | Table 5: NAAQS and State Ambient Air Quality Standards | | | Table 6: Summary of Regulatory Dose Limits | 64 | #### 1 Introduction This Environmental Assessment (EA) addresses the potential environmental effects, beneficial and adverse, of the fielding and operation of one High Energy Mobile X-Ray Inspection System (HEMXRIS) by the U.S. Customs and Border Protection (CBP) at the Port of Charleston, Charleston County, South Carolina. This EA satisfies the requirements specified in the National Environmental Policy Act of 1969 (NEPA) as amended, the Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508), and Department of Homeland Security (DHS) Management Directive 5100.0, Environmental Planning Program (71 FR 16790-16820, April 4, 2006). NEPA requires CBP and other federal agencies to fully understand, and take
into consideration during decision making, the environmental consequences of proposed federal actions. HEMXRISs, which are part of a comprehensive mix of technologies designed to complement one another and present a layered defense to smuggling attempts, allow CBP officers to inspect for contraband without having to physically enter into or unload cargo containers. Congressionally funded and directed, HEMXRISs fulfill Non-Intrusive Inspection (NII) technology requirements found in (1) The Office of National Drug Control Policy (ONDCP) National Drug Control Strategy; (2) The Office of National Drug Control Policy (ONDCP) Ten Year Counterdrug Technology Plan and Development Roadmap; (3) CBP Container Security Initiative; (4) National Security Presidential Directive — 17/Homeland Security Presidential Directive; 4 National Strategy to Combat Weapons of Mass Destruction; (5) National Security Presidential Directive — 43/Homeland Security Presidential Directive — 14 Domestic Nuclear Detection; (6) U.S. Customs and Border Protection 2005-2010 Strategic Plan and (7) The Security and Accountability For Every Port Act of 2006. #### 1.1 Background DHS was established in the aftermath of the terrorist attacks of September 11, 2001. The following elements are central to the mission of the department: AWARENESS – Identify and understand threats, assess vulnerabilities, determine potential impacts, and disseminate timely information to our homeland security partners and the American public. PREVENTION – Detect, deter, and mitigate threats to our homeland. PROTECTION – Safeguard our people and their freedoms, critical infrastructure, property, and the economy of our Nation from acts of terrorism, natural disasters, or other emergencies. RESPONSE – Lead, manage, and coordinate the national response to acts of terrorism, natural disasters, or other emergencies. RECOVERY – Lead national, state, local, and private sector efforts to restore services and rebuild communities after acts of terrorism, natural disasters, or other emergencies. SERVICE – Serve the public effectively by facilitating lawful trade, travel, and immigration. ORGANIZATIONAL EXCELLENCE – Value our most important resource, our people. Create a culture that promotes a common identity, innovation, mutual respect, accountability and teamwork to achieve efficiencies, effectiveness, and operational synergies. On March 1, 2003, the Immigration and Naturalization Service (INS) ceased to exist, U.S. Customs was renamed CBP and various border functions from INS and the Department of Agriculture were transferred to CBP. As the single, unified border agency, CBP's mission is vitally important to the protection of America and the American people. CBP's priority mission is preventing terrorists and terrorist weapons from entering the United States, while also facilitating the flow of legitimate trade and travel. In performing its mission, CBP intercepts large quantities of contraband at the seaports and ports of entry. For example, in Fiscal Year 2007 alone, a total of 2,786,137 pounds of marijuana, 281,371 pounds of cocaine, 3,248 pounds of methamphetamine, and 2,167 pounds of heroin were seized nationally by CBP (CBP 2007). To improve the inspection process, CBP continuously seeks technological solutions that are safe for both humans and the environment and are cost effective. One method of conducting inspections used by CBP involves the use of non-intrusive inspection (NII) technology, which use X-ray or gamma radiation sources to "see" into cargo containers to identify potential contraband as well as persons attempting to illegally enter the country by hiding within a cargo container. These NII technologies can perform effective, rapid inspections without having to physically enter into or unload cargo containers, thereby reducing the risks for CBP officers. At ports of entry, CBP's Office of Field Operations (OFO) secures the flow of people and cargo into and out of the country, while facilitating legitimate travel and trade. OFO's Strategic Plan, Securing America's Borders at Ports of Entry, Office of Field Operations Strategic Plan FY 2007–2011, defines CBP's national strategy for securing America's borders specifically at ports of entry. OFO's strategic plan includes a mission statement that fully supports CBP mission statement, but narrows the scope to ports of entry: "Ports of entry are America's gateways. At ports of entry, CBP prevents entry of people and goods that are prohibited or threaten our citizens, infrastructure, resources, and food supply, while efficiently facilitating legitimate trade and travel." HEMXRISs directly support the four elements outlined below in the operational vision for secure borders at the ports of entry. The successful combination of these elements creates ports of entry where only lawful border crossers and legitimate goods are allowed to enter the United States: **Deterrence** – Potential violators are unwilling to attempt to enter the country through the ports of entry. **Interception** – Dangerous and inadmissible people and goods are detected and prevented from entry. **Facilitation** – Known low-risk people and goods are separated from those of higher risk and moved quickly and securely through the port. **Consistency** – Violators have an equal risk of detection and prevention regardless of mode of transportation or port of entry. #### 1.2 Purpose and Need The purpose of the Proposed Action is the fielding and operation of one HEMXRIS at the port to conduct NIIs of high-density cargo containers for contraband such as illicit drugs, currency, guns, and weapons of mass destruction. For the purposes of this environmental analysis, high-density cargoes and containers are defined as having a density greater than 6 inches of steel. The need of the Proposed Action is to assist in fulfilling the requirement for the 100% scanning of containers entering the United States as directed in the Security and Accountability For Every (SAFE) Port Act of 2006 (H.R. 4954). Because of the sheer volume of sea container traffic and the opportunities it presents for terrorists, containerized shipping is uniquely vulnerable to terrorist attack. During 2007, the Port of Charleston was ranked as the 11th busiest container port in North America, having 1,005,752 containers pass the port during that year (AAPA 2008). In order to effectively inspect high-density cargoes and containers, NII candidates must be able to provide penetration of greater than 6 inches of steel. #### 1.3 Public Involvement In keeping with established policy regarding an open decision-making process, this final EA and Finding of No Significant Impact (FONSI) will be made available to agencies and the general public. A Notification of Availability (NOA) will be published in applicable local newspapers and copies of the document made available to the general public at local libraries and the following public review website: http://ecso.swf.usace.army.mil/Pages/Publicreview.cfm. For further information on the Proposed Action or to request a copy of the EA, please contact Ms. Sharon Sharp-Harrison, Branch Director, Office of Information and Technology, Laboratories and Scientific Services, Interdiction Technology Branch, 1300 Pennsylvania Avenue, NW, Suite 1575, Washington, DC 20229. #### 1.4 Framework for Analysis This EA was prepared in compliance with the National Environmental Policy Act (NEPA), (Public Law 91-190, 42 U.S.C. 4321-4347, as amended), the Council on Environmental Quality (CEQ) Regulations for implementing the procedural provisions of NEPA (40 CFR Parts 1500-1508) and DHS Management Directive 5100.1, "Environmental Planning Program," (April 19, 2006). [See also, 71 Fed. Reg. 16,790] (April 4, 2006).] NEPA directs federal agencies to fully understand and take into consideration during decision-making, the environmental consequences of proposed federal actions. In addition to the evaluation for potential direct and indirect impacts, the Proposed Action was also evaluated for cumulative impacts on the environment as described later in section 4, "Cumulative Impacts," of this EA. #### 1.5 Description of the HEMXRIS The model chosen for deployment is the Heimann Cargo Vision-Mobile (HCVM). Representative photographs of the system are shown in figures 1 and 2. HEMXRISs employ an X-ray source to produce images of tankers, commercial trucks, sea and air containers, and other cargo containers for contraband such as drugs, explosives, and weapons. The systems are able to scan cargo containers in one pass. The systems are mounted on a truck chassis and operated by a three-man crew. The systems operate by slowly driving past a cargo container with the boom extended over the target container. When deployed for scanning operations the HCVM is approximately 18.33 feet high, 29.0 feet wide, and 34.5 feet long (see figures 1 and 2). No radiation source material is used to produce images. #### 1.5.1 Detector and Source Boom Assembly The detection boom is aligned with the X-ray emission subsystem, and when deployed, forms the complete detection subsystem. The detection boom is comprised of an L-shaped detection line made up of a series of detectors that convert the X-ray emissions produced by the accelerator into an electronic signal. These detectors are placed along the length of a rigid metal structure, which is enclosed in a casing. #### 1.5.2 Imaging System HEMXRISs utilize a linear accelerator to produce the X-ray emissions that are targeted at the detector box assembly. An onboard generator provides the electric power supply during scanning operations. #### 1.5.3 Radiation Safety Features #### 1.5.3.1 Operator Controls and Displays HEMXRISs are equipped with the operator controls and displays required for scanning targets and reviewing images acquired from the scan. The X-ray linear accelerator is controlled
through these interfaces when performing inspections. An emergency stop "E-Stop" Switch can immediately stop all operations, including X-ray production when activated. #### 1.5.3.2 Radiation Controlled Area Controlled Area is defined by 10 CFR 20.1003 as "an area, outside of a restricted area but inside the site boundary, access to which can be limited by the licensee for any reason." CBP has elected to use the term "controlled area" rather than "restricted area" as the scanning systems are not in continuous scanning mode. Further, the traditional wording of restricted area has other uses on the port and does not accurately describe the caution that CBP desires to show the public. CBP establishes a controlled area around the HEMXRIS which helps limit the potential doses to CBP personnel and the public to below 0.00005 rem in any one hour. The dimensions of the controlled area is established through radiation surveys conducted by the CBP Radiation Safety Office (see figures 3 and 4 for dimensions). At the edge of the controlled area, the radiation dose will not exceed CBP established 0.00005 rem in any one hour. No personnel will be allowed in the radiation controlled area during scanning operations. The controlled area is a moving footprint of specified dimensions. During an inspection process, the controlled area will be coincident with the movement of the HEMXRIS. HEMXRIS. Controlled area dimensions may be adjusted when needed by using cargo containers as a backstop, or by using masonry walls. The controlled area would only be adjusted under the supervision of the CBP Radiation Safety Officer in order to maintain the radiation exposure limit of 0.00005 rem in any one hour limit and 0.1 rem per year. In the event other NII technologies are present at the port, CBP will ensure that controlled areas for each technology are adequately designated and do not overlap with one another. During scanning operations, signs in multiple languages are posted at the controlled area boundary indicating the radiation hazard. Ground guides are positioned at various locations around the controlled area to warn persons of the danger as well as provide visual queues to the driver of the HEMXRIS. The system is capable of incorporating an infrared safety barrier that stops the forward movement of the inspection system as well as the production of X-rays should the beam barrier be broken. Figure 1: HCVM (Stowed Configuration) Image Source: Smiths Heimann Figure 2: HCVM (Deployed Configuration) Image Source: CBP Figure 3: HCVM Controlled Area for Operation at 3.8 MeV Target (40 foot in length) 15' HCVM 133' Figure 4: HCVM Controlled Area for Operation at 4.2 MeV #### 2 The Proposed Action and Alternatives Under NEPA, the proponent for an action is responsible for considering a reasonable range of alternatives for achieving a goal or implementing a project or program. This section provides a description of the Proposed Action and alternatives considered in order to identify potentially affected environments and potential impacts to these environments. Two action scenarios were evaluated in the EA. - 1. Fielding and Operation of the HEMXRIS - 2. The No-Action Alternative Fielding and Operation of the HEMXRIS was chosen as the preferred alternative and is presented as the Proposed Action, in this EA, along with the No Action Alternative. #### 2.1 Alternative 1 – Proposed Action The Proposed Action consists of the fielding and operation of one HEMXRIS at the Port of Charleston, South Carolina for the purpose of conducting NIIs of high-density cargo containers. The model chosen for deployment is the Heimann Cargo Vision-Mobile (HCVM). The system will be moved to any previously disturbed paved areas within the port suitable for conducting inspections as required. The system is discussed in section 1.5. There is no additional construction or infrastructure required for the operation or storage of the system. #### 2.2 Alternative 2 - No Action Alternative The No Action Alternative is to continue to inspect cargo containers entering the United States at the Port of Charleston with existing equipment and methods. This inspection process involves visual and manual inspections with a limited number of tools such as other NII technology. This approach is not as efficient and effective at detecting the range of materials which could be detected with HEMXRISs in addition to current inspection techniques. Furthermore, it would not reduce the need for CBP officers to enter potentially dangerous situations to carry out these inspections. Although the No Action Alternative does not meet the purpose and need, it serves as a basis of comparison to the Proposed Action. #### 2.3 Other Alternatives Considered Three additional alternatives were found to be reasonable for providing CBP with the capability to inspect containers with high-density cargoes. - 3. Mid-Energy X-Ray Inspections Systems (0.25 < 2 MeV); - 4. Gamma Imaging Inspection Systems (137Cs/60Co) - 5. Conducting inspection of containers at a dedicated cargo inspection facility at another location other than the port. Each of the alternatives was evaluated on its ability to provide the required functional capability to support CBP mission. Alternative (3), Mid-Energy X-Ray Inspection Systems, and Alternative (4), Gamma Imaging Inspection Systems, were determined to not be functionally viable in meeting the mission requirement for penetration of high-density cargo and therefore were not carried forward for detailed analyses. Alternative (5) was not carried forward for detailed analysis due to specific language in the SAFE Port Act requiring the use of non-intrusive imaging equipment in tandem with radiation detection equipment. Additionally, the SAFE Port Act requires that 100 percent of the containers that have been identified as high-risk are scanned before such containers leave a United States seaport facility. ## 3 The Affected Environment and Consequences This section describes the current condition of environmental resources at the Port of Charleston and the possible impacts to these resources from the Proposed Action and No Action Alternative. The descriptions represent baseline conditions for the comparison of changes caused by implementation of the Proposed Action and No Action Alternative. Potential changes or impacts to the resources are described in each section as potential consequences. Cumulative impacts, or impacts attributable to the Proposed Action when combined with other past, present or reasonably foreseeable future impacts regardless of the source, are presented in section 4. ## 3.1 Preliminary Impact Scoping Table 1 presents the results of the preliminary impact scoping and explains why certain resources were excluded from further discussion. In keeping with the CEQ guidelines (40 CFR 1500.4) on reducing paperwork and focusing the analysis on issues of concern to the public and policymakers, only those environmental resources that could potentially be affected (i.e. those resources that are retained in Table 1) will be discussed in detail. **Table 1: Preliminary Impact Scoping** | Resource | Potential for Impact | Retained (Y/N) | |-----------------------------|---|----------------| | Climate | The Proposed Action will not have an adverse effect on the climate. | N | | Geology and Soils | No construction or excavation is required for the Proposed Action. The system is mobile and can be moved as needed. Scattered X-radiation will not contaminate soils because it is energy which dissipates as soon as the source is turned off, just as a room becomes dark as soon as the light switch is turned off. No direct impacts to geology and soils would occur from the implementation of the Proposed Action. | N | | Hydrology and Water Quality | The Proposed Action will not affect hydrology, water resources or water quality. | N | | Floodplains | According to FEMA, all of the port's terminals are located in 100 year floodplains (FEMA 2004). The Proposed Action will not have an impact on any floodplain. | N | | Wetlands | The Proposed Action will occur on previously paved surfaces and will not impact any wetlands. | N | | Coastal Zone | The port is located in the South Carolina Coastal Zone. The Proposed Action is consistent with current actions at the port. No coastal zone resources will be adversely affected by the Proposed Action. | N | | Resource | Potential for Impact | Retained (Y/N) | |--------------------------------------|---|----------------| | Vegetation and
Wildlife | The Proposed Action will occur on previously paved surfaces and will be consistent with current actions at the port. No vegetation or wildlife will be impacted by the Proposed Action. | N | | Threatened and
Endangered Species | The Proposed Action will take place in paved, industrial areas where suitable wildlife habitat and species does not exist. The Proposed Action will have no effect on threatened or endangered species. | N | | Air Quality | Charleston County is in attainment for all criteria pollutants (EPA 2008a). Air quality impacts associated with the Proposed Action would be limited to
localized effects associated with emissions generated by the HEMXRIS and other idling vehicles during operations. Although emission levels are expected to be well below prescribed limits, further evaluation is warranted. | Y | | Noise | The Proposed Action is consistent with current actions at
the port and will not measurably change the existing
noise environment or exceed any noise limit
requirements. As a result, the Proposed Action will not
have a significant noise impact. | N | | Land Use and Zoning | The Proposed Action is consistent with current land use and zoning practices at the terminal. | N | | Aesthetics and Visual
Resources | The Proposed Action would not obscure or result in abrupt changes to the complexity of the landscape and skyline when viewed from points readily accessible to the public. No long-term change to the character of the area would occur as a result of the Proposed Action. | N | | Infrastructure/Utilities | The port has pre-existing water and electrical services. The Proposed Action will not impact the infrastructure and utility services of the port. | N | | Traffic /
Transportation | During the planning process for each NII system and prior to deployment, site surveys are conducted, and coordinations with the appropriate stakeholders are made to ensure that the placement and operation of systems are integrated with port traffic patterns and facilities to minimize delays to legitimate transportation. | N | | Waste Management | Wastes associated with the Proposed Action are used oil and lubricants for the operation and maintenance of the HEMXRIS. These will be accumulated and stored in compliance with applicable regulations at or near the point of generation and recycled by a licensed used oil recycler. 40 CFR Part 279 exempts used oil and lubricants from regulation as a hazardous waste if they are recycled and not mixed with any other hazardous | N | | Resource | Potential for Impact | Retained (Y/N) | |----------|--|----------------| | | wastes. It is not anticipated that the operation and maintenance of the system will generate amounts of hazardous wastes that would have any affect on the port's current generator status. There is no radioactive source or byproduct material used in the system, therefore there is no risk of a release of radioactive materials. | | | | HEMXRISs might contain materials that could be hazardous if the materials are handled improperly. An example of such a material would be lead metal, which is used for radiation shielding. As a system component, the lead will be innocuous and will provide a protective function from ionizing radiation. | | | | As a CBP asset, all materials within the system will be in use for their intended purpose, under the supervision of appropriately trained personnel. Under this scenario, there is no hazard to the human environment because the materials will be contained within the system as functional components of the system. | | | | In the event of an accident, hazardous materials would
not be expected to cause any significant harm to the
human environment, because the amount of materials is
small, and most materials will be in solid form which
would be readily contained and recovered. Accident
response procedures are in place at the port to contain and
remove fluids such as lubricants and fuel. | | | | The most important action to ensure that hazardous materials have no significant effect on the human environment will be upon the replacement or decommissioning of a component or system. Appropriate disposition will depend upon type and quantity of materials involved and the applicable regulations. If a component is replaced or decommissioned, the handling, storage, use, transfer, and disposal of all materials will comply with applicable regulations. This will prevent human exposure and releases to the environment of any hazardous material. | | | Resource | Potential for Impact | Retained (Y/N) | |--|--|----------------| | Historic and
Archeological
(Cultural) Resources | The HEMXRIS will be operated in an industrial setting and will not have an impact on sites that are listed on, or potentially eligible for listing on, the National Register of Historic Places. There is no construction or excavation related to the Proposed Action. Implementing the Proposed Action will not have a significant impact on cultural or historic resources. | N | | Socioeconomics | The Proposed Action will not affect employment, housing or demographics. Implementation of the Proposed Action may produce indirect socioeconomic effects by deterring the movement of illicit drugs, explosives, firearms, or other contraband into the U.S. Similar indirect effects could result if the Proposed Action led to the apprehension of criminals or terrorists attempting to enter the U.S. Such effects, however, are only theoretical and will not be further evaluated in this document. | N | | Environmental Justice | Implementation of the Proposed Action will not have any negative effect on minority and low-income populations or children. | N | | Irreversible and Irretrievable Commitment of Resources | The irreversible and irretrievable commitment of resources associated with the Proposed Action will be materials, utilities, labor and time expended in the operation of the HEMXRIS. | N | | Radiological Health and Safety | X-radiation from the HEMXRIS has the potential to impact the health and safety of operators, officers, and the general public. Although exposures are expected to be well below the EPA and OSHA prescribed limits, further evaluation is warranted. | Y | ## 3.2 Air Quality ## 3.2.1 Criteria for Significance The air quality analysis presented below responds to two separate federal statutes – NEPA, which is the basis of this EA, as well as the Clean Air Act (CAA). These two statutes vary considerably in terms of the analysis required as well as the mandated response to potential air quality impacts. Fulfillment of one requirement does not fulfill the other requirement, nor does the exemption of one automatically exempt the other. NEPA requires that agencies evaluate whether there will be significant air quality impacts resulting from their actions, with significance defined in terms of the "context" and "intensity" of impacts. The CAA imposes certain duties on federal agencies. In November 1993, the Environmental Protection Agency (EPA) published the General Conformity Final Rule in the Federal Register (EPA 1993). The purpose of the rule is to ensure that all federal actions that take place in a nonattainment area or a maintenance area conform to any existing state implementation plan (SIP) or maintenance plan to protect air quality in the area where the Proposed Action occurs. Conformity to the purpose of the SIP means that the proposed federal action will not cause new air quality violations, worsen existing violations, or delay timely attainment of the relevant national ambient air quality standards (NAAQS or "standards"). Not all federal actions are required to make a formal conformity determination. If an initial review determines that annual emissions resulting from the Proposed Action will not reach certain threshold levels (40 CFR Part 93.153), then there is no obligation to proceed with a formal conformity determination. Additionally, conformity analysis is only required for those criteria pollutants for which the area is in non-attainment. The applicable regulations for defining "conformity" are cited in 40 CFR Parts 6, 51, and 93. A "federal action" is defined in 40 CFR 93.152 as "any activity engaged in by a department, agency, or instrumentality of the federal government, or any activity that a department, agency or instrumentality of the federal government supports in any way, provides financial assistance for, licenses, permits, or approves, other than activities related to transportation plans, programs, and projects developed, funded, or approved under title 23 U.S.C. or the Federal Transit Act (49 U.S.C.1601 *et seq.*)." The General Conformity Rule is only applicable to non-attainment and maintenance areas. Air quality impacts resulting from the Proposed Action would be considered significant, within the NEPA context, if the following were to occur: - The Proposed Action or the No Action Alternative caused an exceedance of one or more of the NAAQS for criteria pollutants within the region of concern. - The Proposed Action or the No Action Alternative is not in conformity with section 176 of the Clean Air Act for federal actions or an approved SIP. #### 3.2.2 Baseline Environment Charleston County, South Carolina is in attainment area for all criteria pollutants (EPA 2008a). ### 3.2.3 Potential Consequences ### 3.2.3.1 Proposed Action - Fielding and Operation of the HEMXRIS Detailed air quality analysis is provided in Appendix B. No
construction is necessary for the Proposed Action. Minimum emissions will be produced from the HEMXRIS and other idling vehicles during operations. All emission levels from the activities associated with the Proposed Action are below the tons/year *de minimis* threshold values that would be applicable to nonattainment and maintenance areas for all pollutants as specified in 40 CFR 93.153(b)(1)(2). Therefore the Proposed Action is not anticipated to cause an exceedance of any NAAQS for criteria pollutants. Because the project area is in attainment for all criteria pollutants, the Proposed Action will not conflict with conformity requirements of section 176 of the Clean Air Act for federal actions or any approved SIP. The Proposed Action will not have a significant impact on local or regional air quality within the context of the Clean Air Act or NEPA. #### **3.2.3.1.1** Best Management Practices To reduce emissions from the Proposed Action, cargo container handling equipment waiting for the inspection of containers by the HEMXRIS will follow federal and state regulations regarding the control of idling times. The system is a 2006-2007 model vehicle and includes the Best Available Control Technology as defined by the EPA. #### 3.2.3.2 No Action Alternative No change in existing ambient air quality would occur and no new pollution sources would be introduced. The No Action Alternative includes inspecting cargo containers visually and with other technologies currently in use at the port. No impact to air quality is anticipated under the No Action Alternative. ## 3.3 Radiological Health and Safety ### 3.3.1 Criteria for Significance Evaluation of the potential effect of radiation exposure on public safety is based on both the potential for an accident and the consequences of any project-related effect associated with normal operations. Beneficial impacts may result from any direct or indirect safety improvements due to project implementation. An alternative could have a significant impact if it would increase or decrease the risk of exposure of personnel or the public to radiation hazards. #### 3.3.2 Baseline Environment #### 3.3.2.1 Ionizing Radiation Radiation is the most complex of all considerations pertaining to the operation of HEMXRISs. The focus of this section, Radiological Health and Safety, is ionizing radiation. See Appendix C for background information on ionizing radiation. HEMXRISs employ advanced high energy digital X-ray imaging technology that has successfully been used in various industrial applications such as field inspection of structures like bridges and buildings. As radiation-producing devices, these systems are subject to review by radiation protection authorities. These include the Occupational Safety and Health Administration (OSHA), the Food and Drug Administration (FDA), and the South Carolina Department of Human Resources. During normal operating conditions, the affected environment includes the area surrounding the cargo containers being scanned by the HEMXRIS. System operators and maintenance personnel, as well as people in the area around the systems are the key component of the affected environment. For purposes of discussion, people are classified into two categories: - 1. Maintenance personnel - 2. General public (including system operators) All maintenance personnel are employees of the equipment manufacturer. Due to the nature of their jobs, they have the potential to be exposed to a higher level of radiation than system operators and members of the general public. For its officers, port employees and truck drivers, CBP has adopted the same effective radiation dose standard that the Nuclear Regulatory Commission (NRC) and the State of South Carolina prescribe for members of the general public, i.e. 0.1 rem in a year. These personnel do not pass through the beam during scanning operations. #### 3.3.3 Potential Consequences #### 3.3.3.1 Proposed Action - Fielding and Operation of the HEMXRIS #### 3.3.3.1.1 Exposure Pathways The radiation exposure pathway for the general public is created from exposure to scattered radiation from the X-ray source during container scanning operations. However, in all cases, the radiation dose received by the general public will not exceed 0.1 rem in a year. #### 3.3.3.1.2 Normal Operations #### 3.3.3.1.2.1 Human Exposure All maintenance personnel who maintain the linear accelerator (linac) and X-ray source components are employees of the equipment manufacturer. By the nature of their jobs, they have the potential to be exposed to a higher level of radiation than the system operators and members of the general public. Maintenance of the linac and X-ray source components will have to comply with the EPA, OSHA, and State of South Carolina's strict dose standards for radiation workers. For a more detailed discussion of dose standards, see Appendix C. HEMXRISs are designed so that the radiation dose levels within the driver's cab and at the inspector work-stations (systems operators) will be below CBP prescribed limits of 0.1 rem in a year. Detailed radiation surveys, performed by or under the supervision of the CBP Radiation Safety Office, have confirmed that these design criteria have been met. In all cases, exposures were measured using a "worst-case" scatter in the X-ray beam. Furthermore, since such a worst-case scatter scenario is not likely to occur, these estimated exposure levels are conservative by a substantial amount. As an additional precaution, as the HEMXRIS is delivered, exposure measurements will be made in the cab and work-station areas to ensure that the system is in compliance with exposure limits. For its officers, CBP has adopted the same effective radiation dose standard that the Nuclear Regulatory Commission (NRC) and the State of South Carolina prescribe for members of the general public, i.e. 0.1 rem in a year. CBP has adopted the NRC standard because the OSH Act only addresses occupational dose exposure limits. Although CBP officers are "occupationally exposed," as defined by the International Commission on Radiological Protection (ICRP) (ICRP 2007) because their assigned duties involve exposure to radiation or to radioactive material, CBP has decided to limit their "occupational dose" to no more than that allowable for members of the public. This limit applies to all CBP employees or contractors who work on or maintain HEMXRISs, but not linac or X-ray source components. This means that, as far as radiation dose standards are concerned, system operators are the same as members of the general public. For a more detailed discussion of dose standards, see Appendix C. Occupational exposure, to the effective radiation dose standard CBP has adopted, is not expected to cause a significant increase in the risk of cancer. For a more detailed discussion of information concerning risks from occupational radiation exposure, see Appendix D. To meet the threshold radiation dose limit, CBP establishes a controlled area for the HEMXRIS. No personnel are allowed in the controlled areas during scanning operations. The HCVM has two settings for operation, 3.8 MeV and 4.2 MeV. The dimensions for the HCVM operating at 3.8 MeV are 110 feet in length, 82 feet in width as depicted in Figure 3. The dimensions for the controlled area for HCVM operating at 4.2 MeV are 135 feet in length and 133 feet in width as depicted in Figure 4. At the edges of this controlled area the radiation dose will not exceed 0.00005 rem in any one hour and 0.1 rem per year. The radiation dose of 0.00005 rem in any one hour is inclusive of background radiation which accounts for approximately half 0.00002 to 0.00003 rem of the radiation dose. In other words, the radiation dose received from the HCVM is on the order of that received from natural background radiation. Controlled area dimensions may be adjusted when needed by using cargo containers as a backstop, or by using masonry walls. The controlled area would only be adjusted under the supervision of the CBP Radiation Safety Officer in order to maintain the radiation exposure limit of 0.00005 rem in any one hour limit and the 0.1 rem limit per year. Controlled areas are calculated and verified for each NII system and are designed to provide adequate separation from other NII operating areas, adjacent structures, work areas and traffic flows to protect workers, the general public and contents of adjacent buildings. In the extreme, a system operator (or a member of the general public) could be situated at the edge of the controlled area 8 hours a day, every workday of the year (that is to say, 2,000 hours per year) and not receive more than the limits prescribed by the NRC and the State of South Carolina. The controlled area ensures that the system conforms to the radiation protection guidelines of reducing the radiation levels to As Low as is Reasonably Achievable (ALARA). Given the engineering design features built into HEMXRISs and the implementation of a controlled area, the impact of radiation to the operator, port employees, and the general public would not be significant. #### 3.3.3.1.2.2 Effects of Irradiation on Food The CBP Radiation Safety Office has conducted tests to determine the worst-case scenario of radiation doses to food as a result of implementing the Proposed Action. The total absorbed dose deposited in food subjected to scanning by a HEMXRIS operating at 4.2 MeV (worst-case) is approximately 0.00135 rem per scan, on the same order as that received by a person hidden in a cargo container. This dose is 266 times less than the average annual background dose in the U.S. of 0.360 rem. The Food and Drug Administration at 21 CFR 179.21 requires a label be affixed to each machine stating that no food shall be exposed to x-radiation sources to receive an absorbed dose in excess of 50 rem.² The HEMXRIS's absorbed dose is 37.037 times less than this limit. Table 2 lists the results of testing performed by the
CBP Radiation Safety Officer. Three water bottles were positioned inside the cargo container as illustrated in Figure 5. Bottle 1 was positioned along the centerline of the cargo container approximately 19 feet forward of the rear entry doors. Bottle 2 was positioned next to the container wall (closest to the accelerator) approximately 14 feet forward of the rear entry doors. Bottle 3 was positioned next to the container wall (farthest from the accelerator) approximately 7 feet forward of the rear entry doors. Each bottle had 3 dosimetry badges attached (left, center, and right side) facing the accelerator. Based on these measurements and in compliance with the provisions of 21 CFR 179.21 it is concluded that radiation from the Proposed Action will have no significant impact on food that may be located in scanned containers. **Table 2: Dosimetry Results** | Location | Position | Results | Number of Scans | Results rem | |----------|----------|------------|-----------------|-----------------| | | (Badge) | rem (mrem) | | (mrem) per scan | | | | HCV | V M | | | 1 | a | 0.022 (22) | 23 | 0.00096 (0.96) | | 1 | b | 0.019 (19) | 23 | 0.00083 (0.83) | | 1 | c | 0.024 (24) | 23 | 0.00104 (1.04) | | 2 | d | 0.028 (28) | 23 | 0.00122 (1.22) | | 2 | e | 0.026 (26) | 23 | 0.00113 (1.13) | | 2 | f | 0.031 (31) | 23 | 0.00135 (1.35) | | 3 | g | 0.007(7) | 23 | 0.00030 (0.30) | | 3 | h | 0.009 (9) | 23 | 0.00039 (0.39) | | 3 | i | 0.007(7) | 23 | 0.00030 (0.30) | _ $^{^{2}}$ 0.5 gray (Gy) per 21 CFR 179.21. 1Gy = 100 rad = 100 rem, and therefore, 0.5 Gy = 50 rem. Figure 5: Location of Water Bottles and Dosimetry Badges #### **3.3.3.1.2.3** Maintenance CBP personnel will not perform any maintenance of the linac or the X-ray source enclosure. CBP personnel will periodically perform maintenance of the detectors and test the system using procedures described in the operator's manual. Non-routine linac and X-ray source maintenance will be performed by the manufacturers. #### 3.3.3.1.2.4 Radiation Safety Engineering Controls HEMXRISs incorporate redundant safety controls, such as emergency shutoff controls at several locations on the systems. The personnel assigned to operate the system will be specifically trained for safe X-radiation system operations according to the CBP Office of Training and Development standards. Training for the system operators will consist of lectures, courses and a written examination in basic radiation physics, radiation safety, biological effects of radiation, instrumentation, radiation control and operating procedures during normal and emergency conditions. #### 3.3.3.1.3 Abnormal Events #### 3.3.3.1.3.1 Effects of Irradiation on Persons Hiding in Cargo Containers As stated in section 3.3.3.1.2.1 (Human Exposure), the NRC and the State of South Carolina have established the maximum allowable value of radiation dose that may be received by individuals (individual members of the general public) to be 0.1 rem in a year. It is possible that people will hide themselves in cargo containers in order to surreptitiously enter the United States. A person concealed in a cargo container that is scanned by a HEMXRIS will be exposed to radiation as a direct consequence of the inspection process. The CBP Radiation Safety Officer conducted testing to determine the dose that a person hidden in a cargo container would experience during HEMXRIS scanning operations. The total absorbed dose to persons hiding in cargo containers subjected to scanning by a system operating at 4.2 MeV (worst-case) is approximately 0.00135 rem per scan, on the same order of that received by food. This dose is 266 times less than the average annual background dose in the U.S. of 0.360 rem and 74 times below levels permissible to the general public. Neither cargo container drivers nor any other personnel pass through the beam during scanning operations. Assuming 0.00135 rem per scan, to reach the maximum allowable "in a year" radiation dose, a person would have to be scanned 74 times in a year. Since the chance of this frequency of exposure is remote, it is concluded that radiation from HEMXRISs will not have a significant impact on persons located in scanned cargo containers. ## 3.3.3.1.4 Best Management Practices and Mitigation Measures for Radiological Health and Safety Best management practices for radiological health and safety include but are not limited to: - Incorporation of safety warnings and precautions into technical manuals and operator manuals. - Training of operators and screening operations supervisors in the hazards associated with radiation producing equipment. - Incorporation of radiation safety engineering controls (E-Stops) on the equipment. - Training operators and screening operations supervisors in the location and use of radiation safety engineering controls (E-Stops). - The establishment of radiation controlled areas during screening operations. The combination of these precautions will ensure that the cumulative radiation dose to Officers and the general public will not exceed 0.00005 rem in any one hour or 0.1 rem per year. #### 3.3.3.2 No Action Alternative Under the No Action Alternative, the inspection process at the port will continue to be conducted with current techniques and equipment, including visual and manual inspections to detect contraband. Persons entering the United States hidden in cargo containers would not be exposed to radiation levels above those that are naturally occurring if the No Action Alternative is implemented. Alternatively, contraband that HEMXRISs are designed to detect could pass through the port unnoticed. As a consequence, there will be no health, public safety, and environmental benefits to society that could theoretically result from intercepting a higher percentage of contraband at the U.S. border. Moreover, CBP officers would continue to engage in the same rate of potentially risky inspections of confined spaces to intercept contraband and prevent illegal entry into the United States. ## 4 Cumulative Impacts The Council on Environmental Quality (CEQ) regulations stipulate that the cumulative effects analysis in an Environmental Assessment (EA) should consider the potential environmental impacts resulting from "the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or non-federal) or person undertakes such other actions" 40 CFR 1508.7. Recent CEQ guidance (CEQ 1997) addressing cumulative effects affirms this requirement, stating that the first steps in assessing cumulative effects involves defining the scope of the other actions and their interrelationship with the Proposed Action. The scope must consider other projects that coincide with the location and timetable of the Proposed Action and other actions. Cumulative effects analysis must also evaluate the nature of interactions among these actions. In this EA, an effort has been made to identify all actions that are being considered and are in the planning phase at this time that could affect the area in the vicinity of the proposed HEMXRIS at the Port of Charleston. To the extent that details regarding such actions exist and the actions have a potential to interact with the Proposed Action in this EA, these actions are included in this cumulative analysis. This approach enables decision-makers to have the most complete information available so that they can evaluate the environmental consequences of a Proposed Action in relation to other projects that may affect the same region of influence. ## 4.1 Past and Present Actions Relevant to the Proposed Action and Alternative CBP operates presently, or plans to operate in the near future, other NII technologies suited to the various inspection needs at the port. In the event other NII technologies are present or planned for operation at the port, CBP will ensure that controlled areas for each technology are adequately designated and do not overlap with one another. Cumulative emission estimates for the other NII were made based on similar assumptions as the HEMXRIS, and the processing speeds of each system. The resulting emissions estimates are listed in Appendix B. In 2005, the South Carolina State Ports Authority (SPA) implemented radio frequency technology to improve cargo management and handling efficiency. Consequently the port was able to maintain turnaround times for cargo handling trucks although cargo volume increased (SPA 2006). Inner harbor deepening and widening was completed in 2004. Previous to that, larger ships could only enter the harbor during high water because water depth was otherwise inadequate. In 2005 the Arthur Ravenel Bridge was completed to provide 186 vertical feet of clearance at mean high water. # 4.2 Reasonably Foreseeable Actions that Could Interact with the Proposed Action and Alternative This category of actions includes port, tenant and user actions that have a potential to partially coincide, either in time or geographic extent, with the Proposed Action. Information on these proposals is included to determine whether they would, if implemented, incrementally affect environmental resources: - As part of a comprehensive mix of technologies, CBP may eventually install and operate additional NII. - Increased efficiencies in landside handling and storage and is expected to be pursued by the port in order to improve efficient and safe handling of cargo. The SPA's two-year capital program includes \$154 million for improvements and equipment for existing ports. This likely includes addition of cargo handling equipment and improvement in storage capacity/efficiencies. - The SPA is in the process of developing a new marine terminal at the former Charleston Navel Base. The terminal will cover 280 acres and will have three berths. - The SPA plans to develop 25 acres at the Wando Welch Terminal, to create storage for refrigerated containers. - In March, 2007
the SPA entered into a memorandum of agreement with the South Carolina Department of Health and Environmental Control (DHEC) to address port related air quality. The agreement requires that the SPA will: - o complete an emissions inventory of existing facilities within 18 months; - o fund the purchase, installation and utility costs for a particulate matter monitoring station that will be owned and operated by DHEC; - o purchase cleaner burning equipment for the new terminal at the former Charleston Navel Base; - o use cleaner engines when rebuilding existing equipment or replacing retired equipment; - o evaluate the use of cleaner burning fuels and the future use of shore-toship electric power for ships at berth; and - o implement an air quality education and outreach and pursue anti-idling initiatives and include contractor guidelines in construction bid documents to minimize air impacts. In terms of air quality, a wide variety of other future actions could impact cumulative affects related to the Proposed Action. CBP may add additional NII equipment to its cargo inspection process, which will entail minor increases in diesel emissions. Looking at the broader picture, it can be assumed that shipping and cargo handling at the port will continue to expand in the future, with the potential for increased environmental affects, such as air emissions from ships and diesel vehicles, as well as contaminants from ship operations. In addition to activities at the port itself, a number of other actions, both regional and national, will contribute to cumulative air quality impacts in the area. Some factors may tend to reduce emissions in the region, such as an increase in the cost of diesel fuel that could reduce the total number of miles trucks are driven in the region. Continuing improvements in vehicle and ship emissions technology, as well as fuel composition, could also reduce emissions per mile from diesel vehicles. On the other hand, population and industrial growth in the region could increase overall emissions. ### 4.3 Summary of Cumulative Effects The potential for cumulative impacts resulting from the actions described above when combined with the Proposed Action in this EA are summarized here. The scope is limited to the resources analyzed in section 3 of this EA. Since the Proposed Action will have no impact on the resources that were determined to be unaffected by the Proposed Action, they would not contribute to cumulative impacts either. #### 4.3.1 Air Quality Cumulative emissions for planned and potential future NII were found not to be significant (see Appendix B). All CBP NII vehicles currently meet the EPA emission standards. These findings are documented in Appendix B. Although terminal equipment is required to move cargo containers to and from the inspection area, it doesn't necessarily follow that the movement of containers for inspection results in a significant increase in emissions. In the aggregate, the emissions are "emissions neutral" in that cargo handling equipment is not exclusively used for the movement of containers for inspection. Cargo handling equipment is also used to rearrange containers to make space when new containers arrive and to move items from one area of the port to another area for various reasons. Cumulative emissions for proposed and existing NII were estimated and found not to be significant (see Appendix B). Past, present and foreseeable actions of the port related to air quality will likely result in the control and/or reduction of port related emissions and improvement of air quality. Planned expansions of the port and potential additions of NII systems could result in additional emissions in the future. However, this will take place in the context of ongoing emissions reductions efforts by the port and regulatory actions. Therefore, future port growth and NII deployments are not expected to result in significant, cumulative air quality effects. ## 4.3.2 Radiological Health and Safety Aside from NII equipment operated or proposed by CBP, there is no other known NII equipment at the port that could combine with the proposed action and cause a significant cumulative effect. NII equipment has little potential to create cumulative health impacts under normal operating conditions when they are used for their intended purpose by qualified personnel under the supervision of a radiation safety officer in accordance with applicable heath and safety regulations. Controlled areas are calculated and verified for each NII system and are designed to provide adequate separation from other NII operating areas, adjacent structures, work areas and traffic flows to protect workers, the general public and contents of adjacent buildings. Limiting access to the controlled areas ensures that the public (which includes system operators and port personnel) are not exposed to radiation levels exceeding those prescribed by state and federal regulations (see Appendix C and Appendix D). The HEMXRIS and associated controlled area will occupy a maximum of 17,955 square feet of space on the port during operations (This includes the deployed system and necessary controlled area). The placement of the system combines with placement of other proposed and existing NII systems to occupy a total maximum (if all NII systems operate simultaneously) of 225,755 square feet of port space. The port has adequate space to accommodate the proposed HEMXRIS as well as existing and planned systems. Controlled area dimensions may be adjusted when needed by using cargo containers as a backstop, or by using masonry walls. The controlled area would only be adjusted under the supervision of the CBP Radiation Safety Officer in order to maintain the radiation exposure limit of 0.00005 rem in any one hour limit. ## 5 Findings and Conclusions ## 5.1 Environmental Consequences of the Proposed Action and Alternatives The evaluation of the Proposed Action, fielding and operation of one HEMXRIS at the Port of Charleston, Charleston County, South Carolina, indicates that the human environment, as defined in NEPA, at the port will not be significantly affected. The predicted consequences on resource areas are briefly described below. **Climate** – The Proposed Action will not have an adverse effect on the climate. Geology and Soils – No construction or excavation is required for the Proposed Action. The system is mobile and can be moved as needed. Scattered X-radiation will not contaminate soils because it is energy which dissipates as soon as the source is turned off, just as a room becomes dark as soon as the light switch is turned off. No direct impacts to geology and soils would occur from the implementation of the Proposed Action. **Hydrology and Water Quality** – The Proposed Action will not affect hydrology, water resources or water quality. **Floodplains** – According to FEMA, all of the port's terminals are located in 100 year floodplains (FEMA 2004). The Proposed Action will not have an impact on any floodplain. **Wetlands** – The Proposed Action will occur on previously paved surfaces and will not impact any wetlands. **Coastal Zone** – The port is located in the South Carolina Coastal Zone. The Proposed Action is consistent with current actions at the port. No coastal zone resources will be adversely affected by the Proposed Action. **Vegetation and Wildlife** – The Proposed Action will occur on previously paved surfaces and will be consistent with current actions at the port. No vegetation or wildlife will be impacted by the Proposed Action. **Threatened and Endangered Species** – The Proposed Action will take place in paved, industrial areas where suitable wildlife habitat and species does not exist. The Proposed Action will have no effect on threatened or endangered species. **Air Quality** – Charleston County is in attainment for all criteria pollutants (EPA 2008a). Emissions estimates have shown potential emissions resulting from the Proposed Action to be substantially lower than the state and federal requirements for this area. Conformity analysis conducted in accordance with 40 CFR 93, Subpart B, shows emissions for these criteria to be *de minimis*. No long-term air quality impacts would occur. Impacts to air quality were found to not be significant (See Appendix B). **Noise** – The Proposed Action is consistent with current actions at the port and will not measurably change the existing noise environment or exceed any noise limit requirements. As a result, the Proposed Action will not have a significant noise impact. **Land Use and Zoning** – The Proposed Action is consistent with current actions at the port and will not impact land use or zoning. **Aesthetics and Visual Resources** – The Proposed Action would not obscure or result in abrupt changes to the complexity of the landscape and skyline when viewed from points readily accessible to the public. No long-term change to the character of the area would occur as a result of the Proposed Action. **Infrastructure and Utilities** – The port has pre-existing water and electrical services. The Proposed Action will not impact the infrastructure and utility services of the port. **Traffic and Transportation** – During the planning process for each NII system and prior to deployment, site surveys are conducted, and coordinations with the appropriate stakeholders are made to ensure that the placement and operation of systems are integrated with port traffic patterns and facilities to minimize delays to legitimate transportation. **Waste Management** – Wastes associated with the Proposed Action are used oil and lubricants for the operation and maintenance of the HEMXRIS. These will be accumulated and stored in compliance with applicable regulations at or near the point of generation and recycled by a licensed used oil recycler. 40 CFR Part 279 exempts used oil and lubricants from regulation as a hazardous waste if they are recycled and not mixed with any other
hazardous wastes. It is not anticipated that the operation and maintenance of the system will generate amounts of hazardous wastes that would have any affect on the port's current generator status. There is no radioactive source or byproduct material used in the system, therefore there is no risk of a release of radioactive materials. If the system or system component is replaced or decommissioned, the handling, storage, use, transfer, and disposal of all materials will comply with applicable regulations. This will prevent human exposure and releases to the environment of any hazardous material that could potentially be within the system. **Historical and Archeological (Cultural) Resources** – The HEMXRIS will be operated in an industrial setting and will not have an impact on sites that are listed on, or potentially eligible for listing on, the National Register of Historic Places. There is no construction or excavation related to the Proposed Action. Implementing the Proposed Action will not have a significant impact on cultural or historic resources. **Socioeconomics** – The Proposed Action will not affect employment, housing or demographics. Implementation of the Proposed Action may produce indirect socioeconomic effects by deterring the movement of illicit drugs, explosives, firearms, or other contraband into the U.S. Similar indirect effects could result if the Proposed Action led to the apprehension of criminals or terrorists attempting to enter the U.S. Such effects, however, are only theoretical and will not be further evaluated in this document. **Environmental Justice** – Implementation of the Proposed Action is not expected to have any negative or disproportionate effects on minority and low income populations or children. **Irreversible and Irretrievable Commitment of Resources** – The irreversible and irretrievable commitment of resources associated with the Proposed Action will be materials, utilities, labor and time expended in the operation of the HEMXRIS. **Radiological Health and Safety** – While the use of any NII screening system must be evaluated to ensure that there are no adverse impacts to the health and safety of the public, CBP officers, and port employees, HEMXRISs are designed and operated to avoid these impacts. As promulgated by the Nuclear Regulatory Commission (NRC) in 10 CFR Part 20, the maximum permissible level of radiation dose to the general public is 0.1 rem in a year. This same standard has been adopted by the State of South Carolina. As explained more fully below in section 3.3, CBP will use this protective limit for the public and CBP employees and other port workers. HEMXRIS Occupants – HEMXRISs are designed so that the radiation dose levels within the driver's cab and at the inspector work-stations (system operators) will be below CBP prescribed limits of 0.1 rem in a year. Detailed radiation surveys, conducted on HEMXRISs deployed at other ports and performed by or under the supervision of the CBP Radiation Safety Office, have confirmed that these design criteria have been met. In all test cases, exposures were measured using a "worst-case" scatter in the X-ray beam. Furthermore, since such a worst-case scatter scenario is not likely to occur, these estimated exposure levels are conservative by a substantial amount. As an additional precaution, as the system is delivered, exposure measurements will be made in all cabs and work-station areas to ensure that the system is in compliance with exposure limits. CBP Officers and Port Employees – Due to the nature of their work, CBP officers and port employees who work around HEMXRISs have the potential to be "occupationally exposed" to radiation. The NRC and the Occupational Safety and Health Administration (OSHA) allow a higher permissible exposure level ("occupational dose") for radiation workers in restricted areas (5 rem in a year, but CBP has elected to use the general public protection standard of 0.1 rem in a year as the maximum permissible level of radiation dose for CBP officers and port employees (50 times more stringent than occupational dose limits). The radiation dose from the HEMXRIS will be no more than 0.00005 rem in any one hour since personnel will stand behind a marker delineating a "controlled area." An analysis of potential exposure was based on 2,000 work hours per year as the maximum exposure time. This assumes that an individual spends all of a forty-hour work week, every week of the year, standing at the boundary of a system's controlled area. Even under those circumstances, neither CBP officers nor port ³ As defined by the International Commission on Radiological Protection (ICRP) (ICRP 2007) employees will experience a cumulative dose greater than the NRC limit for protecting the general public. Controlled Area – The HCVM has two settings for operation, 3.8 MeV and 4.2 MeV. The dimensions for the HCVM operating at 3.8 MeV are 110 feet in length, 82 feet in width as depicted in Figure 3. The dimensions for the controlled area for HCVM operating at 4.2 MeV are 135 feet in length and 133 feet in width as depicted in Figure 4. In the extreme, a system operator (or a member of the general public) could be situated at the edge of the controlled area 8 hours a day, every workday of the year (that is to say, 2,000 hours per year) and not receive more than the limits prescribed by the NRC and the State of South Carolina (0.1 rem per year). The controlled area ensures that the system conforms to the radiation protection guidelines of reducing the radiation levels to As Low as is Reasonably Achievable (ALARA). ALARA is defined in 10 CFR 20.1003 as: "... means making every reasonable effort to maintain exposures to radiation as far below the dose limits in this part as is practical consistent with the purpose for which the licensed activity is undertaken, taking into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, and other societal and socioeconomic considerations, and in relation to utilization of nuclear energy and licensed materials in the public interest." In addition, 10 CFR 20.1101(b) requires that: "[t]he licensee shall use, to the extent practical, procedures and engineering controls based upon sound radiation protection principles to achieve occupational doses and doses to members of the public that are as low as is reasonably achievable (ALARA)." Controlled areas are calculated and verified for each NII system and are designed to provide adequate separation from other NII operating areas, adjacent structures, work areas and traffic flows to protect workers, the general public and contents of adjacent buildings. Analysis and testing for this Environmental Assessment shows that exposures are expected to be well below the maximum levels of exposure set by the NRC and State of South Carolina (0.1 rem per year) to protect workers and the general public; therefore, the health and safety impacts from radiological exposure for the Proposed Action were found to not be significant. See section 3.3 for further discussion of radiological health and safety. ## 5.2 Summary of Best Management Practices and Mitigation Actions Planned **Best Management Practices for Air** – To reduce emissions from the Proposed Action, cargo container handling equipment waiting for the inspection of containers by the HEMXRIS will follow federal and state regulations regarding the control of idling times. The HEMXRIS is a 2006-2007 model vehicle that includes the Best Available Control Technology as defined by the U.S. Environmental Protection Agency (EPA). **Best Management Practices for Wastes** – Petroleum, oils, and lubricants will be stored, handled, and disposed of in compliance with applicable laws and regulations. Procedures for the safe refueling of HEMXRISs and for the containment and clean-up of potential spills will be in accordance with existing port procedures for preventing and controlling releases. CBP personnel will be trained in spill prevention and countermeasures as required by the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. §6901, *et seq.*) and the Oil Pollution Act of 1990 (OPA) (33 U.S.C §2701 *et seq.*) HEMXRIS s might contain materials that could be hazardous if the materials are handled improperly. An example of such a material would be lead metal, which is used for radiation shielding. As a system component, the lead will be innocuous and will provide a protective function from ionizing radiation. As a CBP asset, all materials within the system will be in use for their intended purpose, under the supervision of appropriately trained personnel. Under this scenario, there is no hazard to the human environment because the materials will be contained within the system as functional components of the system. In the event of an accident, hazardous materials would not be expected to cause any significant harm to the human environment, because the amount of materials is small, and most materials will be in solid form which is readily be contained and recovered. Accident response procedures are in place at the port to contain and remove fluids such as lubricants and fuel. The most important action to ensure that hazardous materials have no significant effect on the human environment will be upon the replacement or decommissioning of a component or system. Appropriate disposition will depend upon type and quantity of materials involved and the applicable regulations. If a component is replaced or decommissioned, the handling, storage, use, transfer, and disposal of all materials will comply with applicable regulations. This will prevent human exposure and releases to the environment of any hazardous material. **Best Management Practices and Mitigation Measures for Radiological Health and Safety** – Best management practices for radiological health and safety
include but are not limited to: - Incorporation of safety warnings and precautions into technical manuals and operator manuals - Training of operators and screening operations supervisors in the hazards associated with radiation producing equipment. - Incorporation of radiation safety engineering controls (E-Stops) on the equipment. - Training operators and screening operations supervisors in the location and use of radiation safety engineering controls (E-Stops). - The establishment of radiation controlled areas during screening operations. The combination of these precautions will ensure that the cumulative radiation dose to Officers and the general public will not exceed 0.00005 rem in any one hour or 0.1 rem per year. ## 5.3 Findings and Conclusions Based upon the results of the EA (an evaluation of the potential impacts to the environmental resources at the port and results from radiation surveys conducted using the HEMXRIS), implementation of the Proposed Action, coupled with the identified best management practices and mitigation measures, will result in no significant adverse effects on the human environment. Therefore, no further environmental impact analysis is warranted. #### 6 References - AAPA. 2008. North American Port Container Traffic 2007. AAPA Advisory, May 2008. - Advisory Council on Historic Preservation. 2000. 36 CFR Part 800. Protection of Historical Properties. 65 FR 77725, Dec. 12, 2000. - CBP. Container Security Initiative. http://www.cbp.gov/xp/cgov/enforcement/international_activities/csi/. Accessed August 2007. - CBP. 2006a. Environmental Assessment for High-Energy X-Ray Inspection System the Port of Charleston Charleston, South Carolina. January 2006. Final Report. - CBP. 2006b. Securing America's Borders at Ports of Entry Office of Field Operations Strategic Plan FY 2007–2011. Office of Field Operations, September 2006. - CBP. 2007. Performance and Accountability Report Fiscal Year 2007, November 13, 2007, http://www.cbp.gov/xp/cgov/toolbox/publications/admin/ Accessed February 2008. - Coastal Zone Management Act. 1972. 16 U.S.C. 33 as amended - Council on Environmental Quality (CEQ). 1978. Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act. 40 CFR Parts 1500-1508. 43 FR 55994. November 29, 1978. - Council on Environmental Quality (CEQ). 1997. Considering Cumulative Effects Under the National Environmental Policy Act. January 1997. - Department of Homeland Security. 2006. Environmental Planning Program. Department of Homeland Security. Final Notice. Federal Register/Vol. 71, No.64/Tuesday, April 4, 2006/Notices. Pages 16790-16820. - Endangered Species Act of 1973. 16 USC 1531-1544 as amended. - Environmental Protection Agency (EPA). 1987. Radiation Guidance to Federal Agencies for Occupational Exposure. 52 FR 2822. January 27, 1987. - Environmental Protection Agency (EPA). 1998. Air and Radiation Office of Mobile Sources. 1998 EPA 420-F-014. Emission Facts, Idling Vehicle Emissions. - Environmental Protection Agency (EPA). 1993. 58 FR 63214, Determining Conformity of General Federal Actions to State and Federal Implementation Plans. - Environmental Protection Agency (EPA). 1995. Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources. January 1995. - Environmental Protection Agency (EPA). 2008a. EPA Greenbook. Website: http://www.epa.gov/oar/oaqps/greenbk. Accessed January 2008. - Environmental Protection Agency (EPA). 2008b. National Ambient Air Quality Standards http://epa.gov/air/criteria.html. Accessed January 2008. - Executive Office of the President. 1998. Office of the National Drug Control Policy. Ten-Year Counterdrug Technology Plan and Development Roadmap. - Executive Office of the President. 2003. Office of the National Drug Control Policy. Counterdrug Research and Development Blueprint Update 2003. - Executive Office of the President. 2008. Office of the National Drug Control Policy. National Drug Control Strategy 2008. - Executive Order of the President #11988. 1977. Floodplain Management - Executive Order of the President #11990. 1978. Protection of Wetlands - Executive Order of the President #12898. 1994. Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations. - FEMA. (2004). Flood Insurance Rate Map, Charleston County, South Carolina and Incorporated Areas. Map Number 45019C0, Panels 315, 502, 509 and 516. November 17, 2004. - Food and Drug Administration. 2002. Department of Health and Human Services. 21 CFR 179.21. Sources of Radiation Used for Inspection of Food, for Inspection of Packaged Food, and for Controlling Food Processing. 51 FR 13399, Apr. 18, 1986, as amended at 67 FR 9585, Mar. 4, 2002; 67 FR 35731, May 21,2002. - Health Physics Society. 2004. Radiation Risk in Perspective. Position Statement of the Health Physics Society. Health Physics News. August 2004. - International Commission on Radiological Protection (ICRP). 2007. Annals of the ICRP, Volume 37, Issues 2-4, April-June 2007, pages 81-123. - Khan, Siraj M., Paul E. Nicholas, and Michael S. Terpilak. 2004. Radiation Dose Equivalent to Stowaways in Vehicles. *Health Physics* **86** (5): 483-492. - National Environmental Policy Act. Public Law 91-190, 42 U.S.C. 4321-4347 as amended. - National Historic Preservation Act (NHPA). 1966. Public Law 89-665, 16 U.S.C. 470 as amended. - National Security Presidential Directive (NSPD), Number 43, and Homeland Security Presidential Directive (HSPD), Number 14, "Domestic Nuclear Detection" (April 15, 2002). - National Security Presidential Directive (NSPD), Number 17, and Homeland Security Presidential Directive (HSPD), Number 4, "National Strategy to Combat Weapons of Mass Destruction" (December 2002). - National Council on Radiation Protection and Measures (NCRP). 1997. Uncertainties in fatal cancer risk estimates used in radiation protection. Bethesda, MD: NCRP; NCRP Report No. 126. - Nuclear Regulatory Commission. Design-Basis Accident. http://www.nrc.gov/reading-rm/basic-ref/glossary/design-basis-accident.html. Accessed October 2007. - Nuclear Regulatory Commission. 1991. 10 CFR Part 20. Standards for Protection Against Radiation. 56 FR 23391, May 21, 1991. - Nuclear Regulatory Commission. 1996. Regulatory Guide 8.29. Instructions Concerning Risks From Occupational Radiation Exposure, Revision 1. February 1996. - Nuclear Regulatory Commission. 2001. Consolidated Guidance: 10 CFR Part 20 - Standards for Protection Against Radiation (NUREG-1736). Division of Industrial and Medical Nuclear Safety, Office of Nuclear Material Safety and Safeguards. October - Occupational Health and Safety Administration. 1996a. 29 CFR 1910.95. Occupational Safety and Health Standards. 39 FR 23502, June 27, 1974, as amended at 46 FR 4161, Jan. 16, 1981; 46 FR 62845, Dec. 29, 1981; 48 FR 9776, Mar.8, 1983; 48 FR 29687, June 28, 1983; 54 FR 24333, June 7, 1989; 61 FR 9236, Mar. 7, 1996. - Occupational Health and Safety Administration. 1996b. 29 CFR 1910.1096. Ionizing Radiation. [39 FR 23502, June 27, 1974, as amended at 43 FR 49746, Oct. 24, 1978; 43 FR 51759, Nov. 7, 1978; 49 FR 18295, Apr. 30, 1984; 58 FR 35309, June 30, 1993. Redesignated at 61 FR 31430, June 20, 1996. - Office of National Drug Control Policy (ONDCP). 1998. Ten Year Counterdrug Technology Plan and Development Roadmap. - Office of National Drug Control Policy (ONDCP). 2000. National Drug Control Strategy, 2000 Annual Report, Counterdrug Research and Development Blueprint Update. Page 6. - Resource Conservation and Recovery Act. 1976. P.L.103-355. 42 U.S.C. 6901 et seq. - South Carolina Code of Regulations. 61-62.5, Air Pollution Control Standards.http://www.scstatehouse.net/coderegs/c061b.htm. Accessed August 2007. - South Carolina Code of Regulations 61-63, Radioactive Materials, http://www.scstatehouse.net/coderegs/61c.htm. Accessed August 2007. ## 7 Persons and Organizations Contacted Steve Brooks Ocean & Coastal Resource Management Department of Health and Environmental Control 1362 McMillan Ave, Suite 400 Charleston, SC 29405 Jennifer Hass Environmental Program Office U.S. Customs and Border Protection 1300 Pennsylvania Avenue, NW Suite 1220 Washington, DC 20229 Rebekah Dobrasko State Historic Preservation Office 8301 Parklane Road Columbia, SC 29223 The Honorable A.D. Ellis, Principal Chief Muscogee (Creek) Nation P.O. Box 580 Okmulgee, OK 74447 Dr. Wenonah G. Haire Jr. Tribal Historic Preservation Officer Catawba Indian Nation P.O. Box 750 Rock Hill, SC 29731 Tim Hall, Field Supervisor Charleston Ecological Field Services U.S. Fish and Wildlife Service 176 Croghan Spur Road Suite 200 Charleston, SC 29407 Luke McCormick Radiation Safety Officer U.S. Customs and Border Protection 6650 Telecom Drive Suite 100 Indianapolis, IN 46278 The Honorable Glenna J. Wallace, Chief Eastern Shawnee Tribe of Oklahoma P.O. Box 350 Seneca, MO 64865 Carolyn Whorton NII Program Manager U.S. Customs and Border Protection Interdiction Technology Branch 1300 Pennsylvania Avenue NW Suite 1575 Washington, DC 20229 ## 8 Acronyms and Abbreviations Cesium 137 Cobalt 60 A Cesium 137 Cobalt 60 Ampere AAPA American Association of Port Authorities ALARA As Low As is Reasonably Achievable BEIR Biological Effects of Ionizing Radiation BMP Best Management Practices CAA Clean Air Act CBP Customs and Border Protection CEQ Council on Environmental Quality CFR Code of Federal Regulations CO Carbon Monoxide CSI Container Security Initiative DHEC Department of Health and Environmental Control DHS Department of Homeland Security DOT Department of Transportation EA Environmental Assessment EIS Environmental Impact
Statement EPA Environmental Protection Agency Erg An erg is a small but measurable amount of energy FDA Food and Drug Administration FEMA Federal Emergency Management Agency FONSI Finding of No Significant Impact FR Federal Register Gy Gray HDDV Heavy Duty Diesel Vehicle HEMXRIS High Energy Mobile X-Ray Inspection System $\begin{array}{ccc} HP & & HorsePower \\ H_T & & Dose equivalent \end{array}$ ICRP International Commission on Radiological Protection MeV Million Electron Volts mrad millirad millirem NAA Nonattainment Area NAAQS National Ambient Air Quality Standards NCRP National Council on Radiation Protection NEPA National Environmental Policy Act NHPA National Historic Preservation Act NII Non-Intrusive Inspection NOA Notice of Availability NOI Notice of Intent NOx Nitrogen Oxides NRC Nuclear Regulatory Commission OFO Office of Field Operations #### FINAL Environmental Assessment for a HEMXRIS at the Port of Charleston, Charleston County, South Carolina ONDCP Office of National Drug Control Policy OSH Act Occupational Safety and Health Act OSHA Occupational Safety and Health Administration PEA Programmatic Environmental Assessment PM₁₀ Particulate Matter 10 micrometers or smaller in diameter rad Radiation Absorbed Dose rem Roentgen Equivalent Man RPM Revolutions Per Minute SAFE Security and Accountability for Every (i.e. SAFE Port Act of 2006) SCCOR South Carolina Code of Regulations SHPO State Historic Preservation Officer SIP State Implementation Plan SPA State Ports Authority Sv sievert TEDE Total Effective Dose Equivalent μrad microrad microrem U.S.C. United States Code UNSCEAR United Nations Scientific Committee on the Effects of **Atomic Radiation** USDA United States Department of Agriculture USFWS United States Fish and Wildlife Service VOC Volatile Organic Compounds ## 9 List of Preparers | Name | Agency/ | Discipline/ | Experience | Role in | |----------------|-----------------|------------------|-----------------|------------------| | | Organization | Expertise | | Preparing SEA | | Gary Armstrong | Organizational | Environmental | 14 years in | Environmental | | | Strategies, Inc | Analyst. | NEPA and | Analysis & | | | | | related studies | Impact | | | | | | Evaluation | | Anneke | Organizational | Environmental | 13 years in | Technical review | | Frederick | Strategies, Inc | Scientist | environmental | and editing | | | | | science | | | Kathryn Child | Organizational | Chemistry, | 13 years in | Research, impact | | | Strategies, Inc | Licensed | environmental | analysis, | | | | Environmental | science and | technical review | | | | Health Scientist | regulatory | and editing | | | | | compliance | | ### **10 Distribution List** Curtis E. Bostic, Vice-Chairman Charleston County Council PO Box 31863 Charleston, SC 29417 The Honorable Floyd Breeland South Carolina House of Representatives 328C Blatt Building Columbia, SC 29211 Steve Brooks Ocean & Coastal Resource Management Department of Health and Environmental Control 1362 McMillan Ave, Suite 400 Charleston, SC 29405 The Honorable Henry E. Brown, Jr. U.S. House of Representatives 1124 Longworth House Office Building Washington, DC 20515 The Honorable George E. Campsen III South Carolina Senate 604 Gressette Building Columbia, SC 29202 Chuck Carroll National Maritime Safety Association 919 18th Street, NW Suite 901 Washington, DC 20006 Colleen T. Condon Charleston County Council 3 Gamecock Avenue, Suite 301 Charleston, SC 29407 Jennifer Hass Environmental Program Office U.S. Customs and Border Protection 1300 Pennsylvania Avenue, NW Suite 1220 Washington, DC 20229 The Honorable Jim DeMint U.S. Senate 340 Russell Senate Office Building Washington, DC 20510 The Honorable A.D. Ellis, Principal Chief Muscogee (Creek) Nation P.O. Box 580 Okmulgee, OK 74447 The Honorable Robert Ford South Carolina Senate 506 Gressette Building Columbia, SC 29202 Susan Jenkin Dept of Health & Environmental Control Bureau of Land and Waste Management 2600 Bull Street Columbia, SC 29201 The Honorable Lindsey Graham U.S. Senate 290 Russell Senate Office Building Washington, DC 20510 Bernard Groseclose, President and CEO South Carolina State Ports Authority PO Box 22287 Charleston, SC 29413 The Honorable Ben A. Hagood, Jr. South Carolina House of Representatives 306B Blatt Building Columbia, SC 29211 Librarian Charleston County Library Cooper River Memorial Branch 3503 Rivers Ave North Charleston, SC 29405 Librarian Charleston County Library James Island Branch 1248 Camp Rd. Charleston, SC 29412 Librarian Charleston County Library Main Branch 68 Calhoun St. Charleston, SC 29401 Librarian Charleston County Library Sullivan's Island Branch 1921 I'on Ave. Sullivan's Island, SC 29482 Librarian Charleston County Library Village Branch 430 Whilden St. Mt. Pleasant, SC 29464 The Honorable Harry B. Limehouse III South Carolina House of Representatives 326C Blatt Building Columbia, SC 29211 The Honorable Glenn F. McConnell South Carolina Senate 101 Gressette Building Columbia, SC 29202 The Honorable David J. Mack III South Carolina House of Representatives 328D Blatt Building Columbia, SC 29211 Luke McCormick Radiation Safety Officer U.S. Customs and Border Protection 6650 Telecom Drive Suite 100 Indianapolis, IN 46278 Joe McKeown Charleston County Council 1246 West Vagabond Lane Mount Pleasant, SC 29464 Teddie E. Pryor, Sr. Charleston County Council 2851 Rivers Avenue North Charleston, SC 29405 The Honorable Joseph P. Riley, Jr, Mayor City of Charleston PO Box 652 Charleston, SC 29402 The Honorable Mark Sanford South Carolina Office of the Governor PO Box 12267 Columbia, SC 29211 The Honorable Wallace B. Scarborough South Carolina House of Representatives 326B Blatt Building Columbia, SC 29211 South Carolina Stevedores Association PO BOX 21261 Charleston, SC 29413-1261 State of South Carolina Department of Natural Resources PO Box 167 Columbia, SC 29202 State of South Carolina Division of Occupational Safety and Health P.O. Box 11329 Columbia, SC 29211-1329 Paul Thurmond Charleston County Council 15 Middle Atlantic Wharf Charleston, SC 29401 U.S. Customs and Border Patrol Atlanta Field Operations Office 1699 Phoenix Parkway Suite 400 College Park, GA 30349 The Honorable Glenna J. Wallace, Chief Eastern Shawnee Tribe of Oklahoma P.O. Box 350 Seneca, MO 64865 Carolyn Whorton NII Program Manager U.S. Customs and Border Protection Interdiction Technology Branch 1300 Pennsylvania Avenue NW Suite 1575 Washington, DC 20229 ## **Appendix A: Correspondence** August 11, 2008 Tim Hall, Field Supervisor Charleston Ecological Field Services U.S. Fish and Wildlife Service 176 Croghan Spur Road Suite 200 Charleston. SC 29407 SUBJECT: Fielding and Operation of High Energy Mobile X-Ray Inspection Systems at the Port of Charleston, Charleston County, South Carolina Dear Mr. Hall: The United States Customs and Border Protection (CBP) is notifying you of the Proposed Action noted above. The Proposed Action consists of the fielding and operation of two high energy mobile x-ray inspection systems at the Port of Charleston, Charleston County, South Carolina for the purpose of conducting non-intrusive inspections of cargo containers entering the United States. The systems use a linear accelerator to produce images of the contents of the cargo containers. No x-rays will be produced when the systems are not being operated and no radiation source material is used in the operation of the system. No construction is required for the Proposed Action. These mobile systems will operate on previously paved surfaces at various terminals of the Port of Charleston. An aerial photograph, topographic map and representative pictures of the system are enclosed for reference. An Environmental Assessment (EA) is being drafted to evaluate the potential environmental effects of the Proposed Action. As soon as the draft EA is available you will be sent a copy for your immediate review and comment. If you do not wish to have a copy of the draft EA for review, please notify Ms. Anneke Frederick (please see contact information below). The proposed action takes place within the boundaries of the POE's facilities where there is no habitat suitable for wildlife and no critical habitat that could be affected by the Proposed Action. Therefore, we have determined no threatened or endangered species will be affected by the Proposed Action. We request your concurrence with our determination. Please provide your response and/or questions to Ms. Anneke Frederick at: 1331 Pennsylvania Avenue, NW, Suite 1415, Washington, DC 20004; fax (202) 393-8442; telephone (202) 393-8441 extension 235; or email afrederick@orgstrategies.com. Thank you in advance for your assistance. Sincerely, Sharon Sharp-Harrison Branch Director lanu Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch ## United States Department of the Interior #### FISH AND WILDLIFE SERVICE 176 Croghan Spur Road, Suite 200 Charleston, South Carolina 29407 September 24, 2008 Ms. Anneke Frederick U.S. Customs and Border Protection 1331 Pennsylvania Avenue, NW Suite 1415 Washington, DC 20004 Re: X-Ray Inspection System Charleston County FWS Log No. 2008-I-0640 Dear Ms. Frederick: The U.S. Fish and Wildlife Service (Service) has reviewed the plans for this proposed project. Based on our review and the information received: | It is our opinion that the proposed action will have no effect on resources under the jurisdiction of the Service that are currently protected by the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.)(Act). Therefore, no further action is required under Section 7(a)(2) of the Act. |
--| | We concur with your determination that the proposed action is not likely to adversely affect resources under the jurisdiction of the Service that are currently protected by the Act. Therefore, no further action is required under Section 7(a)(2) of the Act. | | It is our opinion that the proposed action is not likely to have reasonably foreseeable adverse effects on resources under the jurisdiction of the Service that are currently protected by the Act. Therefore, no further action is required under Section 7(a)(2) of the Act. | | The proposed project may impact wetlands. Please contact the U.S. Army Corps of Engineers, Charleston District for more information. | | | August 11, 2008 Steve Brooks Ocean & Coastal Resource Management Department of Health and Environmental Control 1362 McMillan Ave, Suite 400 Charleston, SC 29405 SUBJECT: Fielding and Operation of High Energy Mobile X-Ray Inspection Systems at the Port of Charleston, Charleston County, South Carolina Dear Mr. Brooks: The United States Customs and Border Protection (CBP) is notifying you of the Proposed Action noted above. The Proposed Action consists of the fielding and operation of two high energy mobile x-ray inspection systems at the Port of Charleston, Charleston County, South Carolina for the purpose of conducting non-intrusive inspections of cargo containers entering the United States. The systems use a linear accelerator to produce images of the contents of the cargo containers. No x-rays will be produced when the systems are not being operated and no radiation source material is used in the operation of the system. No construction is required for the Proposed Action. These mobile systems will operate on previously paved surfaces at various terminals of the Port of Charleston. An aerial photograph, topographic map and representative pictures of the system are enclosed for reference. An Environmental Assessment (EA) is being drafted to evaluate the potential environmental effects of the Proposed Action. As soon as the draft EA is available you will be sent a copy for your immediate review and comment. If you do not wish to have a copy of the draft EA for review, please notify Ms. Anneke Frederick (please see contact information below). CBP has determined that the state's coastal zone resources will not be adversely affected by the Proposed Action. We request you concurrence with this determination. Please provide your response and/or questions to Ms. Anneke Frederick at: 1331 Pennsylvania Avenue, NW, Suite 1415, Washington, DC 20004; fax (202) 393-8442; telephone (202) 393-8441 extension 235; or email afrederick@orgstrategies.com. Thank you in advance for your assistance. Sincerely, Sharon Sharp-Harrison Branch Director Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch August 11, 2008 Rebekah Dobrasko State Historic Preservation Office 8301 Parklane Road Columbia, SC 29223 Subject: Fielding and Operation of High Energy Mobile X-Ray Inspection Systems at the Port of Charleston, Charleston County, South Carolina Dear Ms. Dobrasko: The United States Customs and Border Protection (CBP) is notifying you of the Proposed Action noted above. The Proposed Action consists of the fielding and operation of two high energy mobile x-ray inspection systems at the Port of Charleston, Charleston County, South Carolina for the purpose of conducting non-intrusive inspections of cargo containers entering the United States. The systems use a linear accelerator to produce images of the contents of the cargo containers. No x-rays will be produced when the systems are not being operated and no radiation source material is used in the operation of the system. No construction is required for the Proposed Action. These mobile systems will operate on previously paved surfaces at various terminals of the Port of Charleston. An aerial photograph, topographic map and representative pictures of the system are enclosed for reference. An Environmental Assessment (EA) is being drafted to evaluate the potential environmental effects of the Proposed Action. As soon as the draft EA is available you will be sent a copy for your immediate review and comment. If you do not wish to have a copy of the draft EA for review, please notify Ms. Anneke Frederick (please see contact information below). No properties or items of historic significance are known to exist at either project location. Therefore, we have determined that no historic properties listed or eligible for listing within the National Register of Historic Places will be affected by the proposed undertaking. We request your concurrence with our determination. Please provide your response and/or questions to Ms. Anneke Frederick at: 1331 Pennsylvania Avenue, NW, Suite 1415, Washington, DC 20004; fax (202) 393-8442; telephone (202) 393-8441 extension 235; or email afrederick@orgstrategies.com. Thank you in advance for your assistance. Sincerely, Sharon Sharp-Harrison Branch Director Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch ### SOUTH CAROLINA DEPARTMENT OF ARCHIVES & HISTORY STATE HISTORIC PRESERVATION OFFICE PROJECT REVIEW FORM Section 106 of the National Historic Preservation Act requires the South Carolina State Historic Preservation Office to review all projects that are federally funded, licensed, or assisted. Certain state regulatory processes also require our review. All information must be completed before our review can begin. Please allow thirty (30) days from receipt for review of a project. Refer to 36 CFR 800.2 for information about other participants who are entitled to comment in the Section 106 process. SHPO USE ONLY LOG# | GENERAL INFORMATION, | | |--|------------| | 1. Project Name: Procurement Operation of 2, high-energy x-ray systems
2. Project Location (City AND County): Charleston, Charleston County + Beskeley Cour | | | 2. Project Location (City AND County): Charleston, Charleston County + Beskeley Cour | rty | | 3. Federal or State Agency (providing funding, license, or permit): Federal, US Eustoms + Border Patro | -/ | | Agency Contact Name: Sharon Sharp-Harrison, Branch Director | | | Address: 1300 Pennsylvania Ave NW, Suite 1575
(Office of Information + technology) Washington, DC 200
Phone: 202-334-1824 E-mail: Sharon. Sharpharrison @dhs.a | 229
20V | | 4. Applicant (for Federal or State funding, license, or permit): |)- | | Contact Name: | | | Address: | | | | | | Phone: E-mail: | | | 5. Consultant/Agent for Applicant Organizational Strakgies, Inc. | | | Contact Name: Dave Walls | | | Address: 1331 Pennsylvania Ave NW, Suite 1415 | | | Washington, DC 20004 | | | Phone: 202-393-844/ E-mail: dwalls@orgstrategies.com | | | TO BE FILLED OUT BY ARCHIVES AND HISTORY STAFF ONLY | | | Based on the information provided, we know of no properties included in or eligible for inclusion in the National Register of Historic Places that will be affected by this project. Our comments are advisory only. The federal agency is responsible for determining if historic properties will be affected by the undertaking. | | | We request that our office be notified immediately if any archaeological materials are encountered during construction. Archaeological materials consist of any items, fifty years old or older, which were made or used by humans. These items include, but are not limited to, stone projectile points (arrowheads), ceramic sherds, bricks, worked wood, bone and stone, metal and glass objects, and human skeletal materials. | | | Rebekah Dobrasko, Review and Compliance Coordinator | | | , | | ## DETERMINING THE PROJECT AREA OF POTENTIAL EFFECT (APE) See APE guidance document for more information Describe the undertaking Procure and operate 2, mobile high energy x-ray Systems at various terminals of the Portof Charleston. 2. How many acres are in the project area? Describe the terrain of the project area (e.g. flat, hilly, coastal, mountains). ban area land use within the project area (e.g. farmland, forest, developed, etc.): 4. Describe the current Industrial 5. Describe prior land use or previous modification (e.g. grading, plowing, filling, draining Current use has been in place long-term (decades) 6. Will the project involve a rehabilitation, relocation or demolition of any structures? YES O NO Please explain: *If rehabilitation of a historic building is involved, then please complete the Historic Building Supplement. BACKGROUND RESEARCH: Attach the results of a <u>Cultural Resource Information System</u> search showing the project area and any historic properties in the vicinity. Providing this information will help to facilitate our review. Attach a photocopy of a 1:24,000 USGS topographic map section with the boundaries of the project area clearly noted. Maps can be downloaded from www.topozone.com or www.maptech.com FIELD RECONNAISSANCE: 8. Are there any structures within the project area (houses, barns, old garages, sheds, commercial buildings, churches, etc.) YES NO DO NOT KNOW 9. If yes, what is the approximate age and original
use of each structure? Each terminal contains various buildings such as warehouses, + administrative areas. None are expected to be older than 50 years 10. Attach photographs of front and rear elevations of any structures that are more than 50 years old. These structures should also be keyed to the map. Color snapshots or digital photos printed at a high resolution on a quality color printer are acceptable. 11. Please include any additional informatiog that you think would be helpful in the review of this project. attached letter, maps + photos The completed form, results of CRIS search or USGS topographic quad, and any photographs should be sent to Rebekah Dobrasko, Review & Compliance Coordinator, SC Department of Archives and History, 8301 Parklane Road, Columbia, SC 29223-4905. Questions? Telephone 803-896-6169 or E-mail dobrasko@scdah.state.sc.us Rev. 9/04 September 27, 2008 Ms. Anneke Frederick Department of Homeland Security 1331 Pennsylvania Ave., NW, Ste. 1415 Washington, DC 20004 Re: High Energy Mobile X-Ray Inspection Systems Port of Charleston, Charleston and Berkeley Counties, South Carolina SHPO Project No. 08-RD0562 Dear Ms. Frederick: Thank you for your letter of August 11, which we received on September 2, regarding the abovereferenced project. We also received a completed project review form as supporting documentation for this undertaking. The State Historic Preservation Office is providing comments to the Department of Homeland Security pursuant to Section 106 of the National Historic Preservation Act and its implementing regulations, 36 CFR 800. Based on the description of the Area of Potential Effect (APE) and the identification of historic properties within the APE, our office concurs with the assessment that no properties listed in or eligible for listing in the National Register of Historic Places will be affected by this project. We DO NOT need a copy of the Environmental Assessment for this project. If you have any questions, please contact me at (803) 896-6169 or dobrasko@scdah.state.sc.us. Sincerely, Rebeliah Dobrasho Rebekah Dobrasko Review and Compliance Coordinator State Historic Preservation Office August 11, 2008 The Honorable A.D. Ellis, Principal Chief Muscogee (Creek) Nation P.O. Box 580 Okmulgee, OK 74447 Subject Fielding and Operation of High Energy Mobile X-Ray Inspection Systems at the Port of Charleston, Charleston County, South Carolina Dear Principal Chief Ellis: The U.S. Customs and Border Protection (CBP), Office of Information Technology, Laboratories and Scientific Services, Interdiction Technology Branch is notifying you of the Proposed Action noted above. In accordance with Section 106 of the National Historic Preservation Act and its implementing regulations, 36 CFR Part 800, CBP wishes to continue our consultation process with the appropriate federally recognized Native American tribes who historically used this region or continue to use this area. We welcome your comments on this undertaking and look forward to hearing from you regarding known sacred sites or other traditional cultural properties within the proposed project area. CBP is also preparing an Environmental Assessment (EA) for the Proposed Action mentioned above. As soon as the draft EA is available, you will be sent a copy for your immediate review and comment. The Proposed Action consists of the fielding and operation of two high energy mobile x-ray inspection systems at the Port of Charleston, Charleston County, South Carolina for the purpose of conducting non-intrusive inspections of cargo containers entering the United States. The systems use a linear accelerator to produce images of the contents of the cargo containers. No x-rays will be produced when the systems are not being operated and no radiation source material is used in the operation of the system. No construction is required for the Proposed Action. These mobile systems will operate on previously paved surfaces at various terminals of the Port of Charleston. Included are maps of the locations and pictures of the proposed systems. If you have any questions or responses to the above, please feel free to contact Ms. Anneke Frederick at (202) 393-8441 extension 235, or facsimile (202) 393-8442. Sincerely, Sharon Sharp Harrison Branch Director Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch August 11, 2008 The Honorable Glenna J. Wallace, Chief Eastern Shawnee Tribe of Oklahoma P.O. Box 350 Seneca, MO 64865 Subject: Fielding and Operation of High Energy Mobile X-Ray Inspection Systems at the Port of Charleston, Charleston County, South Carolina #### Dear Chief Wallace: The U.S. Customs and Border Protection (CBP), Office of Information Technology, Laboratories and Scientific Services, Interdiction Technology Branch is notifying you of the Proposed Action noted above. In accordance with Section 106 of the National Historic Preservation Act and its implementing regulations, 36 CFR Part 800, CBP wishes to continue our consultation process with the appropriate federally recognized Native American tribes who historically used this region or continue to use this area. We welcome your comments on this undertaking and look forward to hearing from you regarding known sacred sites or other traditional cultural properties within the proposed project area. CBP is also preparing an Environmental Assessment (EA) for the Proposed Action mentioned above. As soon as the draft EA is available, you will be sent a copy for your immediate review and comment. The Proposed Action consists of the fielding and operation of two high energy mobile x-ray inspection systems at the Port of Charleston, Charleston County, South Carolina for the purpose of conducting non-intrusive inspections of cargo containers entering the United States. The systems use a linear accelerator to produce images of the contents of the cargo containers. No x-rays will be produced when the systems are not being operated and no radiation source material is used in the operation of the system. No construction is required for the Proposed Action. These mobile systems will operate on previously paved surfaces at various terminals of the Port of Charleston. Included are maps of the locations and pictures of the proposed systems. If you have any questions or responses to the above, please feel free to contact Ms. Anneke Frederick at (202) 393-8441 extension 235, or facsimile (202) 393-8442. Sincerely, Sharon Sharp-Harrison Branch Director Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch August 11, 2008 Dr. Wenonah G. Haire Jr. Tribal Historic Preservation Officer Catawba Indian Nation P.O. Box 750 Rock Hill, SC 29731 SUBJECT: Fielding and Operation of High Energy Mobile X-Ray Inspection Systems at the Port of Charleston, Charleston County, South Carolina Dear Dr. Haire: The U.S. Customs and Border Protection (CBP), Office of Information Technology, Laboratories and Scientific Services, Interdiction Technology Branch is notifying you of the Proposed Action noted above. In accordance with Section 106 of the National Historic Preservation Act and its implementing regulations, 36 CFR Part 800, CBP wishes to continue our consultation process with the appropriate federally recognized Native American tribes who historically used this region or continue to use this area. We welcome your comments on this undertaking and look forward to hearing from you regarding known sacred sites or other traditional cultural properties within the proposed project area. CBP is also preparing an Environmental Assessment (EA) for the Proposed Action mentioned above. As soon as the draft EA is available, you will be sent a copy for your immediate review and comment. The Proposed Action consists of the fielding and operation of two high energy mobile x-ray inspection systems at the Port of Charleston, Charleston County, South Carolina for the purpose of conducting non-intrusive inspections of cargo containers entering the United States. The systems use a linear accelerator to produce images of the contents of the cargo containers. No x-rays will be produced when the systems are not being operated and no radiation source material is used in the operation of the system. No construction is required for the Proposed Action. These mobile systems will operate on previously paved surfaces at various terminals of the Port of Charleston. Included are maps of the locations and pictures of the proposed systems. If you have any questions or responses to the above, please feel free to contact Ms. Anneke Frederick at (202) 393-8441 extension 235, or facsimile (202) 393-8442. Sincerely, Sharon Sharp-Harrison Branch Director Office of Information and Technology Laboratories and Scientific Services Interdiction Technology Branch Catawba Indian Nation Tribal Historic Preservation Office 1536 Tom Steven Road Rock Hill, South Carolina 29730 Office 803-328-2427 Fax 803-328-5791 27 September 2008 Attention: Sharon Sharp-Harrison US Department of Homeland Security Office of Information and Technology Washington, DC 20229 Re: THPO# Project description 2008-221-2 High Energy Mobile X-Ray Inspection Systems at Port of Charleston, SC Dear Ms. Sharp-Harrison, Thank you for providing us with an opportunity to comment on the Proposed Action noted above. The Catawba have no concerns at this time. Please note that the address you have for us is no longer correct. Please send all mail to: Dr. Wenonah G. Haire CIN-THPO 1536 Tom Steven Road Rock Hill, South Carolina 29730 If you need to contact us, please call Sandra Reinhardt at 803-328-2427 ext. 233 or e-mail sandrar@ccppcrafts.com. Sincerely, Wenonah G. Haire Tribal Historic Preservation Officer Wenonah H. Haire Dow ## **Appendix B: Air Quality Analysis** This analysis considers operational impacts to local and regional air quality that could result from implementation of the Proposed Action.
Construction Emissions The proposed HEMXRIS and existing NII systems discussed below will be operated on existing paved surfaces at the port. No construction is necessary for the Proposed Action. ### **Idling Emissions** The Environmental Protection Agency has determined that for analysis not requiring detailed specific emission estimates tailored to local conditions, the summary of idle emission factors contained in EPA420-F-98-014 can be used to obtain first-order approximations of emissions under idling conditions (e.g., drive-thru lanes). This analysis includes emissions estimates for the proposed system and existing NII systems. Emissions estimates are summarized below in Table 3. #### **HEMXRIS Operations** The engine type to be used on the HEMXRIS is the International DT570 medium duty diesel engine with an average horsepower (HP) rating of 285 HP at 2,200 revolutions per minute (RPM). Designated as a clean fuel fleet vehicle/low emissions vehicle, all engine types meet the EPA requirements for emissions. Emission estimates for the HEMXRIS assume the system will be operated 16 hours per day, 365 days per year and the system will be continuously idling, or scanning cargo containers at a speed of less than 0.5 miles per hour. Emission estimates for vehicles that will be inspected assume that each mobile system processes an average of 20 vehicles per hour (i.e. processing time equals 3 minutes per vehicle and each system processes 320 vehicles per day). #### **Existing NII Systems** CBP operates various NII systems at the port. The emissions estimates for the systems are based on the same assumptions and factors that are used for the HEMXRIS, except the processing times vary per system Table 3: Emissions Estimate from Proposed, Existing and Future Operations ¹ | Source | NOx
(tons/yr) | VOC
(tons/yr) | CO
(tons/yr) | PM ₁₀ (tons/yr) | |-----------------------------|------------------|------------------|-----------------|----------------------------| | HEMXRIS Operations | 1.32 | 0.296 | 2.23 | 0.0611 | | Other NII System Operations | 6.23 | 1.40 | 10.5 | 0.289 | | Cumulative (tons/yr): | 7.55 | 1.70 | 12.7 | 0.350 | ¹Emission factor source for vehicles, "Idling Vehicle Emissions" (EPA 1998). Average of winter and summer factors for HDDV were used Table 4 compares the data presented above in Table 3 with the conformity criteria for non-attainment areas. This comparison shows that the estimated yearly emissions attributable to idling vehicles are well below the allowable limits set in 40 CFR Part 93.153, Determining Conformity of Federal Actions to State or Federal Implementation Plans (the rule). The rule applies to those federal actions that are located in areas of non-attainment of the NAAQS. **Table 4: Conformity Criteria for Nonattainment Areas** | Pollutant | Criterion (tons/yr) ^a | Idling Emissions
Estimate (tons/yr) | |--|----------------------------------|--| | Ozone (VOCs or NOx): | | 1.70 (VOC);
7.55 (NOx) | | Serious NAAs | 50 | | | Severe NAAs | 25 | | | Extreme NAAs | 10 | | | Other ozone NAAs outside
an ozone transport region | 100 | | | Marginal and moderate NAAs inside an ozone transport region | | | | CO: | | 12.7 | | – All NAAs | 100 | | | SO2 or NO2: | 100 | | | – All NAAs | | | | PM ₁₀ : | | 0.350 | | Moderate NAAs | 100 | | | Serious NAAs | 70 | | | Pb: | | | | – All NAAs | 25 | | ^a 40 CFR Part 93.153 Table 5 lists the NAAQS and the South Carolina State Ambient Air Quality Standards. Emissions attributed to the Proposed Action combined with those attributable to past and future actions are well within the limits of the regulations of emissions standards required by both state and federal governments. Table 5: NAAQS and State Ambient Air Quality Standards | Pollutant | Averaging
Time | State
Standards ^a | Fede
Standa | | |--|------------------------------|---------------------------------|--------------------------|--------------------------------| | | | Concentration | Primary | Secondary | | Ozone (03) | 1 Hour | 0.12 ppm | 0.12 ppm
(235 μg/m3) | Same as
Primary | | | 8 Hour | 0.0.08 ppm | 0.08 ppm
(157 μg/m3) | Standard | | Respirable | 24 Hour | $150 \mu g/m3$ | 150 μg/m3 | Same as | | Particulate
Matter
(PM ₁₀) | Annual
Arithmetic
Mean | 50 μg/m3 | 50 μg/m3 | Primary
Standard | | Fine
Particulate | 24 Hour | $65 \mu g/m3$ | 35 μg/m3 | Same as | | Matter (PM2.5) | Annual
Arithmetic
Mean | 15 μg/m3 | 15 μg/m3 | Primary
Standard | | Carbon
Monoxide | 8 Hour | 10 mg/m3 | 9.0 ppm
(10 mg/m3) | None | | (CO) | 1 Hour | 40 mg/m3 | 35 ppm (40 mg/m3) | None | | Nitrogen
Dioxide
(NO2) | Annual
Arithmetic
Mean | 100 μg/m3 | 0.053 ppm
(100 μg/m3) | Same as
Primary
Standard | | Sulfur | Annual
Arithmetic
Mean | 80 μg/m3 | 0.053 ppm
(100 μg/m3) | None | | Dioxide
(SO2) | 24 Hour | 365 μg/m3 | 0.14 ppm
(365 μg/m3) | None | | (502) | 3 Hour | 1,300 µg/m3 | None | 0.5 ppm
(1300 μg/m3) | | | 1 Hour | None | None | None | | Lead | Calendar
Quarter | 1.5 μg/m3 | 1.5 μg/m3 | Same as
Primary
Standard | a South Carolina Code of Regulations. 61-62.5, Air Pollution Control Standards. b 40 CFR Part 50 #### Conclusion All emission levels from the activities associated with the Proposed Action are below the tons/year *de minimis* threshold values that would be applicable to nonattainment and maintenance areas for all pollutants as specified in 40 CFR 93.153(b)(1)(2). Therefore the Proposed Action is not anticipated to cause an exceedance of any NAAQS for criteria pollutants. Because the project area is in attainment for all criteria pollutants, the Proposed Action will not conflict with conformity requirements of section 176 of the Clean Air Act for federal actions or any approved SIP. The Proposed Action will not have a significant impact on local or regional air quality within the context of the Clean Air Act or NEPA. This analysis considers both emissions specific to the Proposed Action and cumulative effects of HEMXRIS operations combined with emissions of existing NII systems operations. ## **Appendix C: Background Information on Ionizing Radiation** The background material contained in this appendix is an excerpt of information found in National Council on Radiation Protection and Measures (NCRP) *Uncertainties in Fatal Cancer Risk Estimates Used in Radiation Protection, NCRP Report Number 126*, and is intended to provide the user with the best available background and regulatory information on ionizing radiation #### Measurement of Radiation Dose Radiation is measured using units that people seldom encounter. It is important to relate the amount of radiation received by the body to its physiological effects. Two terms used to relate the amount of radiation received by the body are "absorbed dose" and "dose equivalent." Absorbed dose means the energy imparted by ionizing radiation per unit mass of irradiated material. The units of absorbed dose are the rad and the gray (Gy). The term "rad" (radiation absorbed dose) is the special unit of absorbed dose of 100 ergs per gram. Different materials that receive the same exposure may not absorb the same amount of energy. The rad is the basic unit of the absorbed dose of radiation (i.e., alpha, beta, gamma, and neutron) to the energy they impart in materials. The dose of one rad indicates the absorption of 100 ergs (an erg is a small but measurable amount of energy) per gram of absorbing material. To indicate the dose an individual receives in the unit rad, the word "rad" follows immediately after the magnitude, for example "50 rad." One thousandth of a rad (millirad) is abbreviated "mrad," and one millionth of a rad (microrad) is abbreviated "µrad." Dose equivalent (H_T) means the product of the absorbed dose in tissue, quality factor, and all other necessary modifying factors at the location of interest. The units of dose equivalent are the rem and sievert (Sv). At the present time, rem is used in the U.S. while sieverts are used internationally. Eventually, the U.S. will adopt these international terms. The term "rem" (Roentgen equivalent man) is a special unit used for expressing dose equivalent. Some types of radiation produce greater biological effects for the same amount of energy imparted than other types. The rem is a unit that relates the dose of absorbed radiation to the biological effect of that dose. Therefore, to relate the absorbed dose of specific types of radiation, a "quality factor" must be multiplied by the dose in rad. To indicate the dose an individual receives in the unit rem, the word "rem" follows immediately after the magnitude, for example "50 rem." One thousandth of a rem (millirem) is abbreviated "mrem," and one millionth of a rem (microrem) is abbreviated "µrem." The quality factor allows for the effect of higher energy deposition along particle tracks produced by various radiation types such as neutrons or alpha particles. For the X- rays, such as those currently utilized in the HEMXRISs, the quality factor is 1, meaning that 1 rad of absorbed dose results in 1 rem of dose equivalent. #### Regulations Covering Radiation Dose Regulations pertaining to radiation exposure are administered by many different federal and state agencies under a variety of legislative authorities. #### Nuclear Regulatory Commission (NRC) (10 CFR Part 20) The Nuclear Regulatory Commission (NRC) promulgates regulations and establishes standards for protection against radiation arising out of activities conducted under licenses issued by the Commission. NRC regulations control the receipt, possession, use, transfer, and
disposal of licensed material by any licensee. CBP currently holds an NRC Materials License for ¹³⁷Cs/ ⁶⁰Co sealed sources. #### Occupational Safety and Health Administration (OSHA) (29 CFR 1910.1096) OSHA regulations establish standards for protection against ionizing radiation that result in an occupational risk, but do not regulate the safety of licensed radioactive materials. ### Food and Drug Administration (FDA) (21 CFR 1020) Performance Standards for Ionizing Radiation Emitting Products) The Food and Drug Administration (FDA) promulgates regulations and establishes standards for the protection against radiation by setting performance standards that manufacturers of ionizing radiation emitting products must meet. #### Environmental Protection Agency (EPA) (Radiation Protection Guidance to Federal Agencies for Occupational Exposure FR 52 2822 January 27, 1987) Federal radiation exposure protection guidance for occupational exposure is defined in *Radiation Protection Guidance to Federal Agencies for Occupational Exposure*. Administered by the EPA, the guidance was developed cooperatively by the Nuclear Regulatory Commission, the Occupational Safety and Health Administration, the Mine Safety and Health Administration, the Department of Defense, the Department of Energy, the National Aeronautics and Space Administration, the Department of Commerce, the Department of Transportation, the Department of Health and Human Services, and the Environmental Protection Agency. The guidance provides general principles, and specifies the numerical primary guides for limiting worker exposure. It applies to all workers who are exposed to radiation in the course of their work, either as employees of institutions and companies subject to federal regulation or as federal employees. It is expected that individual federal agencies, on the basis of their knowledge of specific worker exposure situations, will use the guidance as the basis upon which to revise or develop detailed standards and regulations to the extent that they have regulatory or administrative jurisdiction. #### • State Regulations Many states have adopted regulations modeled on the *Suggested State Regulations for Control of Radiation*. #### State of South Carolina The South Carolina Department of Health and Environmental Control (DHEC) regulates ionizing and non-ionizing sources of radiation to the extent authorized by the NRC. The South Carolina Atomic Energy and Radiation Control Act (§ 13-7-10 et seq.) and the South Carolina Code of Regulations (SCCOR) § 61-63 govern the regulatory program for any person who is licensed to receive or process radioactive materials, as defined, and not exempted. Without Congressional expression that sovereign immunity is waived, a federal agency would not be subject to these state regulations. The state implicitly recognizes this in their regulations which exclude federal government agencies from the scope of the state's radiation regulations (SCCOR § 61-63 1.1 and 1.2.19). #### **Regulatory Jurisdiction** As it applies to the operation of HEMXRISs, the applicable regulations are FDA [21 CFR Part 1020] and OSHA [29 CFR 1910.1096]. - The NRC Guidance provided in 10 CFR Part 20 Standards for Protection Against Radiation apply to persons licensed by the Commission to receive, possess, use, transfer, or dispose of byproduct, source, or special nuclear material or to operate a production or utilization facility. - The EPA guidance provided in FR 52 2822, *Radiation Protection Guidance to Federal Agencies for Occupational Exposure*, is to be used as the basis upon which individual federal agencies revise or develop detailed standards and regulations to the extent that they have regulatory or administrative jurisdiction. #### **Dose Limits** Dose limits represent the upper bound limit below which risks from radiation exposure are deemed to be acceptable. Various Federal and state regulations establish dose limits for occupational exposures that occur as a result of a person's employment, and limits for the total exposures received by the public in general. In 10 CFR. Part 20 and SCCOR § 61-63, the NRC and the State of South Carolina identify two classifications of radiation dose to people. The first classification, "occupational dose," is the "dose received by an individual in the course of employment in which the individual's assigned duties involve exposure to radiation or to radioactive material from licensed and unlicensed sources of radiation, whether in the possession of the licensee or other person. Occupational dose does not include doses received from background radiation, from any medical administration the individual has received, from exposure to individuals administered radioactive material and released under §35.75, from voluntary participation in medical research programs, or as member of the public." 20 CFR. 20.1003 and SCCOR § 61-63 3.2.66. The individuals subject to the occupational dose classification must closely monitor their degree of radiation exposure using dosimeters. The annual occupational dose limit for adults shall not exceed whichever is the more limiting of: a total effective dose equivalent of 5 rem or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue other than the lens of the eye being equal to 50 rem. 10 CFR. 20.1201 and SCCOR § 61-63. 3.5 et seq. The second radiation dose classification, "public dose," is the dose received by a member of the public from exposure to radiation or to radioactive material released by a licensee, or to another source of radiation under the control of a licensee. Public dose does not include occupational dose or doses received from background radiation, from any medical administration the individual has received, from exposure to individuals administered radioactive material and released under §35.75 or from voluntary participation in medical research programs." 10 CFR. 20.1003 and SCCOR § 61-63 3.2.73. The total effective dose equivalent to individual members of the general public from the licensed operations shall not exceed 0.1 rem in a year. 10 CFR. 20.1301 and SCCOR § 61-63. A summary of pertinent dose limits is presented below in Table 6. Table 6: Summary of Regulatory Dose Limits | Dos | se Limit by Age | ncy and Regula | tion (mrem in any | year) | |-------------------------------------|------------------------------|---------------------|--|----------------------------------| | | NRC
10 CFR 20 | EPA
52 FR 2822 | SCCOR § 61-63 3.
3.5 et seq | OSHA
29 CFR 1910.1096 | | "O | ccupational Dose" | = "Radiation Wor | kers" in "Restricted A | Areas" | | Whole Body | 5 | 5 | 5 | 5 (1.25 rem/calendar quarter) | | Lens of Eye | 15 | 15 | 15 | 5 (1.25 rem/calendar
quarter) | | Skin, Hands and
Feet | 50 | 50 | 50 | | | Skin of Whole
Body | | | | 30 (7.5 rem/calendar quarter) | | Hands and forearms; feet and ankles | | | | 75 (18.75 rem/calendar quarter) | | Minors
(10 CFR 20.1207) | 10% of above limits | | Pregnant Women* (10 CFR 20.1208) | 10% of above limits | 10% of above limits | 0.500 | Not Addressed | | | "Non-Occu | pational Dose" = " | Controlled Area" | | | Member of the
General Public | 0.100 rem in a year | Not Addressed | 0.100 rem in any
one year; 0.002
rem in any one
hour | Not Addressed | | | Radiation Leve | els in Unrestricted | (Uncontrolled) Areas | 1 | | Member of the
General Public | 0.002 rem in any
one hour | | 0.002 rem in any
one hour or 100
mrem in any one
year | Not Addressed | ^{*}Applicable period is nine months rather than 1 year. Although OSHA subscribes to dose limits set in NRC regulations, EPA guidance, and various consensus standards, they have not incorporated these limits into 29 CFR 1910.1096. Both the NRC regulations and South Carolina rules incorporate the most recent guidance from the International Commission on Radiological Protection (ICRP) as well as the National Council on Radiation Protection and Measurements (NCRP). #### **Radiation Protection Principles** In the United States and most other countries, three basic principles have governed radiation protection of workers and members of the general public: - 1. Any activity involving occupational exposure should be useful enough to society to warrant the exposure of the worker. This same principle applies to virtually any human endeavor that involves some risk of injury. - 2. For justified activities, exposure of the work force should be as low as reasonably achievable (ALARA). - 3. To provide an upper limit on risk to individual workers, "limitation" of the maximum allowed dose is required. This is required above the protection provided by the first two principles because their primary objective is to minimize the total harm from occupational exposure to the entire work force; they do not limit the way that harm is distributed among individual workers #### As Low as is Reasonably Achievable (ALARA) "As Low as is Reasonably Achievable" (ALARA) means making every reasonable effort to maintain exposures to ionizing radiation as far below the dose limits as practical, consistent with the purpose for which the licensed activity is undertaken, taking into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, and other societal and socioeconomic considerations, and in relation to utilization of nuclear energy and licensed materials in the public interest. This common sense approach means that radiation doses for both workers and the general public are typically kept lower than their regulatory limits. The principle reduction of exposure to levels that are "as low as is reasonably achievable" is typically implemented in four different ways. - 1. Shielding of the source holder. - 2.
Selection of as small of an amount of source material as is needed. - 3. Designing facilities to reduce the anticipated exposure. - 4. Designing work practices to reduce the anticipated exposure. Effective implementation of the ALARA principle involves most facets of an effective radiation protection program including: education of workers concerning the health risks of exposure to radiation, training in regulatory requirements and procedures to control exposure, monitoring, assessment, and reporting of exposure levels and doses and management and supervision of radiation protection activities including the choice and implementation of radiation control measures. A comprehensive radiation protection program will also include, as appropriate: properly trained and qualified radiation protection personnel; adequately designed, operated and maintained facilities and equipment; and quality assurance and audit procedures. #### **Customs and Border Protection Dose Limits** In conformance with ALARA principles, CBP has adopted for its workers the same dose limit as the NRC and the State of South Carolina prescribe for the general public – i.e. 0.1 rem in any year. As a result, CBP will establishes controlled areas around the HEMXRISs as described in Section 3.3.3.3 (Human Exposure) to equally protect the general public and CBP personnel from radiation emissions in accordance with the maximum dose permitted pursuant to NRC and the State of South Carolina. CBP has taken care to model and explore potential exposure to employees working around these systems, and has even made measurements if someone were to be scanned by this or other NII systems. See "Radiation Dose Equivalent to Stowaways in Vehicles," Khan, et al, Health Physics Journal, Volume 86, No. 5, p. 483, May 2004. #### **Health Risks** In their August 2004 revised position statement on radiation risk, the Health Physics Society recommended against the quantitative estimation of health risks below an individual dose of 5 rem in a one year or a lifetime dose of 10 rem above that received from natural sources. Doses from natural background radiation in the United States average about 0.360 rem per year. Estimation of health risks associated with radiation doses that are of similar magnitude as those received from natural sources should be strictly qualitative and encompass a range of hypothetical health outcomes, including the possibility of no adverse health effects at such low levels. The Society further states "While there is substantial and convincing scientific evidence for health risks following high-dose exposures, below 5-10 rem (which includes occupational and environmental exposures), risks of health effects are either too small to be observed or nonexistent." The Society has concluded that estimates of risk should be limited to individuals receiving a dose of 5 rem in any one year or a lifetime dose of 10 rem in addition to natural background. Below these doses, risk estimates should not be used. Expressions of risk should only be qualitative, that is, a range based on the uncertainties in estimating risk (NCRP 1997) emphasizing the inability to detect any increased health detriment (that is zero health effects is a probable outcome). # **Appendix D: Background Information Concerning Risks** from Occupational Radiation Exposure The background material contained in this appendix is excerpted of from the U.S. Nuclear Regulatory Commission Regulatory Guide 8.29, "Instruction Concerning Risks From Occupational Radiation Exposure," February 1996 and the Health Physics Society "Radiation Basics" http://www.hps.org/publicinformation/ate/faqs/radiation.html. This material is intended to provide the user with the best available information about the health risks from occupational exposure to ionizing radiation. Ionizing radiation consists of energy or small particles, such as gamma rays and beta and alpha particles, emitted from radioactive materials, which can cause chemical or physical damage when they deposit energy in living tissue. A question and answer format is used. Many of the questions or subjects were developed by the NRC staff in consultation with workers, union representatives and licensee representatives experienced in radiation protection training. #### **How Is Radiation Measured?** In the United States, radiation dose or exposure is measured in units called rad, rem, or roentgen(R). For practical purposes with gamma and X-Rays, these are considered equal: 1 R = 1 rad = 1 rem. Milli (m) means 1/1000. For example, 1,000 mrad = 1 rad. Micro (μ) means 1/1,000,000. So, 1,000,000 µrad = 1 rad, or 10 µR = 0.000010 R. The International System of Units (SI system) for radiation measurement use "gray" and "sievert." 1 Gy = 100 rad 1 mGy = 100 mrad 1 Sv = 100 rem 1 mSv = 100 mrem #### Is It Safe To Be Around Sources Of Radiation? A single high-level radiation exposure (i.e., greater than 10,000 mrem) delivered to the whole body over a very short period of time may have potential health risks. From follow-up of the atomic bomb survivors, we know acutely delivered very high radiation doses can increase the occurrence of certain kinds of disease (e.g., cancer) and possibly negative genetic effects. To protect the public and radiation workers (and environment) from the potential effects of chronic low-level exposure (i.e., less than 10,000 mrem), the current radiation safety practice is to prudently assume similar adverse effects are possible with low-level protracted exposure to radiation. Thus, the risks associated with low-level medical, occupational, and environmental radiation exposure are conservatively calculated to be proportional to those observed with high-level exposure. These calculated risks are compared to other known occupational and environmental hazards, and appropriate safety standards and policies have been established by international and national radiation protection organizations (e.g., International Commission on Radiological Protection and National Council on Radiation Protection and Measurements) to control and limit potential harmful radiation effects. Both public and occupational regulatory dose limits are set by federal agencies (i.e., Environmental Protection Agency, Nuclear Regulatory Commission, and Department of Energy) and state agencies (e.g., agreement states) to limit cancer risk. Other radiation dose limits are applied to limit other potential biological effects with workers' skin and lens of the eye. | Annual Radiation Dose Limits | Agency | |-------------------------------------|---------------------------------| | Radiation Worker - 5,000 mrem | (NRC, "occupationally" exposed) | | General Public - 100 mrem | (NRC, member of the public) | | General Public - 25 mrem | (NRC, D&D all pathways) | | General Public - 10 mrem | (EPA, air pathway) | | General Public - 4 mrem | (EPA, drinking-water pathway) | ### What Is Meant By Health Risk? A health risk is generally thought of as something that may endanger health. Scientists consider health risk to be the statistical probability or mathematical chance that personal injury, illness, or death may result from some action. Most people do not think about health risks in terms of mathematics. Instead, most of us consider the health risk of a particular action in terms of whether we believe that particular action will, or will not, cause us some harm. The intent of this appendix is to provide estimates of, and explain the basis for, the risk of injury, illness, or death from occupational radiation exposure. Risk can be quantified in terms of the probability of a health effect per unit of dose received. When X-Rays, gamma rays, and ionizing particles interact with living materials such as our bodies, they may deposit enough energy to cause biological damage. Radiation can cause several different types of events such as the very small physical displacement of molecules, changing a molecule to a different form, or ionization, which is the removal of electrons from atoms and molecules. When the quantity of radiation energy deposited in living tissue is high enough, biological damage can occur as a result of chemical bonds being broken and cells being damaged or killed. These effects can result in observable clinical symptoms. The basic unit for measuring absorbed radiation is the rad. One rad (0.01 gray in the International System of units) equals the absorption of 100 ergs (a small but measurable amount of energy) in a gram of material such as tissue exposed to radiation. To reflect biological risk, rads must be converted to rems. The new international unit is the sievert (100 rem = 1 Sv). This conversion accounts for the differences in the effectiveness of different types of radiation in causing damage. The rem is used to estimate biological risk. For beta and gamma radiation, a rem is considered equal to a rad. ### What Are The Possible Health Effects Of Exposure To Radiation? Health effects from exposure to radiation range from no effect at all to death, including diseases such as leukemia or bone, breast and lung cancer. Very high (100s of rads), short-term doses of radiation have been known to cause prompt (or early) effects, such as vomiting and diarrhea, skin burns, cataracts and even death. It is suspected that radiation exposure may be linked to the potential for genetic effects in the children of exposed parents. Also, children who were exposed to high doses (20 or more rads) of radiation prior to birth (as an embryo/fetus) have shown an increased risk of mental retardation and other congenital malformations. These effects (with the exception of genetic effects) have been observed in various studies of medical radiologists, uranium miners, radium workers, radiotherapy patients and the people exposed to radiation from atomic bombs dropped on Japan. In addition, radiation effects studies
with laboratory animals, in which the animals were given relatively high doses, have provided extensive data on radiation-induced health effects, including genetic effects. It is important to note that these kinds of health effects result from high doses, compared to occupational levels, delivered over a relatively short period of time. Although studies have not shown a consistent cause-and-effect relationship between current levels of occupational radiation exposure and biological effects, it is prudent from a worker protection perspective to assume that some effects may occur. ### Who Developed Radiation Risk Estimates? Radiation risk estimates were developed by several national and international scientific organizations over the last 40 years. These organizations include the National Academy of Sciences (which has issued several reports from the Committee on the Biological Effects of Ionizing Radiations, BEIR), the National Council on Radiation Protection and Measurements (NCRP), the International Commission on Radiological Protection (ICRP), and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Each of these organizations continues to review new research findings on radiation health risks. Several reports from these organizations present new findings on radiation risks based upon revised estimates of radiation dose to survivors of the atomic bombing at Hiroshima and Nagasaki. For example, UNSCEAR published risk estimates in 1988 and 1993 (UNSCEAR 1988; UNSCEAR 1993). The NCRP also published a report in 1988, "New Dosimetry at Hiroshima and Nagasaki and Its Implications for Risk Estimates" (NCRP 1988). In January 1990, the National Academy of Sciences released the fifth report of the BEIR Committee, "Health Effects of Exposure to Low Levels of Ionizing Radiation," National Research Council, 1990). Each of these publications also provides extensive bibliographies on other published studies concerning radiation health effects for those who may wish to read further on this subject. # What Are The Estimates Of The Risk Of Fatal Cancer From Radiation Exposure? We don't know exactly what the chances are of getting cancer from a low-level radiation dose, primarily because the few effects that may occur cannot be distinguished from normally occurring cancers. However, we can make estimates based on extrapolation from extensive knowledge from scientific research on high dose effects. The estimates of radiation effects at high doses are better known than are those of most chemical carcinogens (NCRP 1989). From currently available data, the NRC has adopted a risk value for an occupational dose of 1 rem (0.01 Sv) Total Effective Dose Equivalent (TEDE) of 4 in 10,000 of developing a fatal cancer, or approximately 1 chance in 2,500 of fatal cancer per rem of TEDE received. The uncertainty associated with this risk estimate does not rule out the possibility of higher risk, or the possibility that the risk may even be zero at low occupational doses and dose rates. The radiation risk incurred by a worker depends on the amount of dose received. A worker who receives 5 rem in a year incurs 10 times as much risk as another worker who receives only 0.5 rem. Only a very few workers receive doses near 5 rem per year (Raddatz and Hagemeyer 1995). According to the BEIR V report (National Research Council 1990), approximately one in five adults normally will die from cancer from all possible causes such as smoking, food, alcohol, drugs, air pollutants, natural background radiation and inherited traits. Thus, in any group of 10,000 workers, we can estimate that about 2,000 (20%) will die from cancer without any occupational radiation exposure. To explain the significance of these estimates, we will use as an example a group of 10,000 people, each exposed to 1 rem of ionizing radiation. Using the risk factor of 4 effects per 10,000 rem of dose, we estimate that 4 of the 10,000 people might die from delayed cancer because of that 1 rem dose (although the actual number could be more or less than 4) in addition to the 2,000 normal cancer fatalities expected to occur in that group from all other causes. This means that a 1 rem dose may increase an individual worker's chances of dying from cancer from 20 percent to 20.04 percent. If one's lifetime occupational dose is 10 rem, we could raise the estimate to 20.4 percent. A lifetime dose of 100 rem may increase chances of dying from cancer from 20 to 24 percent. It is important to understand the probability factors here. A similar accumulate 100 rem (1 Sv) in a working lifetime, and the average career dose of workers at NRC-licensed facilities 70 ⁴ Given CBP standard of 0.1 rem (0.001 Sv) exposure in any one year, the risk would equate to 4 effects per 100,000. This means that a 0.1 rem (0.001 Sv) dose may increase an individual workers chance of dying from cancer from 20 percent to 20.005 percent. The average measurable dose for radiation workers reported to the NRC was 0.31 rem (0.0031 Sv) for 1993 (Raddatz and Hagemeyer, 1995). Today, very few CBP employees ever question would be, "If you select one card from a full deck of cards, will you get the ace of spades?" This question cannot be answered with a simple yes or no. The best answer is that your chance is 1 in 52. However, if 1000 people each select one card from full decks; we can predict that about 20 of them will get an ace of spades. Each person will have 1 chance in 52 of drawing the ace of spades, but there is no way we can predict which persons will get that card. The issue is further complicated by the fact that in a drawing by 1000 people, we might get only 15 successes, and in another, perhaps 25 correct cards in 1000 draws. We can say that if you receive a radiation dose, you will have increased your chances of eventually developing cancer. It is assumed that the more radiation exposure you get, the more you increase your chances of cancer. The normal chance of dying from cancer is about one in five for persons who have not received any occupational radiation dose. The additional chance of developing fatal cancer from an occupational exposure of 1 rem is about the same as the chance of drawing any ace from a full deck of cards three times in a row. The additional chance of dying from cancer from an occupational exposure of 10 rem is about equal to your chance of drawing two aces successively on the first two draws from a full deck of cards. It is important to realize that these risk numbers are only estimates based on data for people and research animals exposed to high levels of radiation in short periods of time. There is still uncertainty with regard to estimates of radiation risk from low levels of exposure. Many difficulties are involved in designing research studies that can accurately measure the projected small increases in cancer cases that might be caused by low exposures to radiation as compared to the normal rate of cancer. These estimates are considered by the NRC staff to be the best available for the worker to use to make an informed decision concerning acceptance of the risks associated with exposure to radiation. A worker who decides to accept this risk should try to keep exposure to radiation as low as is reasonably achievable (ALARA) to avoid unnecessary risk. ## If I Receive A Radiation Dose That Is Within Occupational Limits, Will It Cause Me To Get Cancer? Probably not. Based on the risk estimates previously discussed, the risk of cancer from doses below the occupational limits is believed to be small. Assessment of the cancer risks that may be associated with low doses of radiation are projected from data available at doses larger than 10 rem (ICRP 1991). For radiation protection purposes, these estimates are made using the straight line portion of the linear quadratic model (Curve 2 in Figure 1). We have data on cancer probabilities only for high doses, as shown by the solid line in 8. Only in studies involving radiation doses above occupational limits are there dependable determinations of the risk of cancer, primarily because below the limits the effect is small compared to differences in 71 is 1.5 rem (0.015 Sv), which represents an estimated increase from 20 to about 20.06 percent in the risk of dying from cancer. the normal cancer incidence from year to year and place to place. The ICRP, NCRP and other standards-setting organizations assume for radiation protection purposes that there is some risk, no matter how small the dose (Curves 1 and 2). Some scientists believe that the risk drops off to zero at some low dose (Curve 3), the threshold effect, The ICRP and NCRP endorse the linear quadratic model as a conservative means of assuring safety (Curve 2). For regulatory purposes, the NRC uses the straight line portion of Curve 2, which shows the number of effects decreasing linearly as the dose decreases. Because the scientific evidence does not conclusively demonstrate whether there is or is not an effect at low doses, the NRC assumes for radiation protection purposes, that even small doses have some chance of causing cancer. Thus, a principle of radiation protection is to do more than merely meet the allowed regulatory limits; doses should be kept as low as is reasonably achievable (ALARA). This is as true for natural carcinogens such as sunlight and natural radiation as it is for those that are manmade, such as cigarette smoke, smog and X-Rays. Figure 1 Some Proposed Models for How the Effects of Radiation Vary with Doses at Low Levels ## How Can We Compare The Risk Of Cancer From Radiation To Other Kinds Of Health Risks? One way to make these comparisons is to compare the average number of days of life expectancy lost because of the effects associated with each particular health risk. Estimates are calculated by looking at a large number of persons, recording the age when death occurs from specific causes, and estimating the average number of days of life
lost as a result of these early deaths. The total number of days of life lost is then averaged over the total observed group. Several studies have compared the average days of life lost from exposure to radiation with the number of days lost as a result of being exposed to other health risks. The word "average" is important because an individual who gets cancer loses about 15 years of life expectancy, while his or her coworkers do not suffer any loss. Some representative numbers are presented in Table 1. For categories of NRC-regulated industries with larger doses, the average measurable occupational dose in 1993 was 0.31 rem. A simple calculation based on the article by Cohen and Lee (Cohen and Lee 1991) shows that 0.3 rem per year from age 18 to 65 results in an average loss of 15 days. These estimates indicate that the health risks from occupational radiation exposure are smaller than the risks associated with many other events or activities we encounter and accept in normal day-to-day activities. It is also useful to compare the estimated average number of days of life lost from occupational exposure to radiation with the number of days lost as a result of working in several types of industries. Table 2 shows average days of life expectancy lost as a result of fatal work-related accidents. Table 2 does not include non-accidental types of occupational risks such as occupational disease and stress because the data are not available. These comparisons are not ideal because we are comparing the possible effects of chronic exposure to radiation to different kinds of risks such as accidental death, in which death is inevitable if the event occurs. This is the best we can do because good data are not available on chronic exposure to other workplace carcinogens. Also, the estimates of loss of life expectancy for workers from radiation-induced cancer do not take into consideration the competing effect on the life expectancy of the workers from industrial accidents. Table 1 Estimated Loss of Life Expectancy from Health Risks | | The Expectancy from French Rusing | |--|--| | Health Risks | Estimate of Life Expectancy Lost (Average) | | Smoking 20 cigarette a day | 6 years | | Overweight (by 15%) | 2 years | | Alcohol consumption (U.S. average) | 1 year | | All accidents combined | 1 year | | Motor vehicle accidents | 207 days | | Home accidents | 74 days | | Drowning | 24 days | | All natural hazards (earthquake, lightning, flood, etc.) | 7 days | | Medical radiation | 6 days | | Occupation | al Exposure | | 0.3 rem/y from age 18 to 65 | 15 days | | 1 rem/y from age 18 to 65 | 51 days | (Cohen and Lee 1991) Table 2 Estimated Loss of Life Expectancy from Industrial Accidents | Industry Type | Estimated Days of Life Expectancy Lost (Average) | |-------------------------------------|--| | All Industries | 60 | | Agriculture | 320 | | Construction | 227 | | Mining and Quarrying | 167 | | Transportation and Public Utilities | 160 | | Government | 60 | | Manufacturing | 40 | | Trade | 27 | | Services | 27 | (Cohen and Lee 1991) # What Are The Health Risks From Radiation Exposure To The Embryo/Fetus? During certain stages of development, the embryo/fetus is believed to be more sensitive to radiation damage than adults. Studies of atomic bomb survivors exposed to acute radiation doses exceeding 20 rads (0.2 Gy) during pregnancy show that children born after receiving these doses have a higher risk of mental retardation. Other studies suggest that an association exists between exposure to diagnostic X-Rays before birth and carcinogenic effects in childhood and in adult life. Scientists are uncertain about the magnitude of the risk. Some studies show the embryo/fetus to be more sensitive to radiation-induced cancer than adults, but other studies do not. In recognition of the possibility of increased radiation sensitivity, and because dose to the embryo/fetus is involuntary on the part of the embryo/fetus, a more restrictive dose limit has been established for the embryo/fetus of a declared pregnant radiation worker. See Regulatory Guide 8.13, "Instruction Concerning Prenatal Radiation Exposure." If an occupationally exposed woman declares her pregnancy in writing, she is subject to the more restrictive dose limits for the embryo/fetus during the remainder of the pregnancy. The dose limit of 0.5 rem for the total gestation period applies to the embryo/fetus and is controlled by restricting the exposure to the declared pregnant woman. Restricting the woman's occupational exposure, if she declares her pregnancy, raises questions about individual privacy rights, equal employment opportunities and the possible loss of income. Because of these concerns, the declaration of pregnancy by a female radiation worker is voluntary. Also, the declaration of pregnancy can be withdrawn for any reason, for example, if the woman believes that her benefits from receiving the occupational exposure would outweigh the risk to her embryo/fetus from the radiation exposure. # Can A Worker Become Sterile Or Impotent From Normal Occupational Radiation Exposure? No. Temporary or permanent sterility cannot be caused by radiation at the levels allowed under NRC's occupational limits. There is a threshold below which these effects do not occur. Acute doses on the order of 10 rem to the testes can result in a measurable but temporary reduction in sperm count. Temporary sterility (suppression of ovulation) has been observed in women who have received acute doses of 150 rads (1.5 Gy). The estimated threshold (acute) radiation dose for induction of permanent sterility is about 200 rads (2 Gy) for men and about 350 rads (3.5 Gy) for women (National Research Council 1990; Scott et al 1993). These doses are far greater than the NRC's occupational dose limits for workers. Although acute doses can affect fertility by reducing sperm count or suppressing ovulation, they do not have any direct effect on one's ability to function sexually. No evidence exists to suggest that exposures within the NRC's occupational limits have any effect on the ability to function sexually. ## What Are Background Radiation Exposures? The average person is constantly exposed to ionizing radiation from several sources. Our environment and even the human body contain naturally occurring radioactive materials (e.g., potassium-40) that contribute to the radiation dose that we receive. The largest source of natural background radiation exposure is terrestrial radon, a colorless, odorless, chemically inert gas, which causes about 55 percent of our average, non-occupational exposure. Cosmic radiation originating in space contributes additional exposure. The use of X-Rays and radioactive materials in medicine and dentistry adds to our population exposure. As shown below in Table 3, the average person receives an annual radiation dose of about 0.36 rem. By age 20, the average person will accumulate over 7 rem of dose. By age 50, the total dose is up to 18 rem. After 70 years of exposure this dose is up to 25 rems. Table 3 Average Annual Effective Dose Equivalent to Individuals in the U.S. | Source | | Effective Dose Equivalent (mrems) | | |--------------------------------|-------------------|-----------------------------------|------------| | Natural | | | | | | Radon | 200 | | | | Other than Radon | 100 | | | | Total Natural | | 300 | | Nuclear Fuel Cycle | | | 0.05 | | Consumer Products ^b | | | 9 | | Medical | | | | | | Diagnostic X-Rays | 39 | | | | Nuclear Medicine | 14 | | | | Total Medical | | 53 | | Total | | | About 360 | | Total | | | mrems/year | (NCRP 1987). #### References B.L. Cohen and I.S. Lee, "Catalog of Risks Extended and Updated," Health Physics, Vol. 61, September 1991. B.R. Scott et al., "Health Effects Model for Nuclear Power Plant Accident Consequence Analysis," Part I: Introduction, Integration, and Summary, U.S. Nuclear Regulatory Commission, NUREG/CR-4214, Revision 2, Part I, October 1993. C.T. Raddatz and D. Hagemeyer, "Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities, 1993," U.S. Nuclear Regulatory Commission, NUREG-0713, Volume 15, January 1995. International Commission on Radiological Protection (ICRP), Annals of the ICRP, Risks Associated with Ionizing Radiation, Volume 22, No.1, Pergamon Press, Oxford, UK, 1991. National Council on Radiation Protection and Measurements (NCRP), New Dosimetry at Hiroshima and Nagasaki and Its Implications for Risk Estimates, Proceedings of the Twentythird Annual Meeting of the National Council on Radiation Protection and Measurements Held on April 8-9, 1987 (1988). National Council on Radiation Protection and Measurements (NCRP), Ionizing Radiation Exposure of the Population of the United States, NCRP Report No. 93, September 1987. National Council on Radiation Protection and Measurements (NCRP), Comparative Carcinogenicity of Ionizing Radiation and Chemicals, NCRP Report No. 96, March 1989. National Research Council, Health Effects of Exposure to Low Levels of Ionizing Radiation, Report of the Committee on the Biological Effects of Ionizing Radiation (BEIR V), National Academy Press, Washington, DC, 1990. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR); Sources, Effects and Risks of Ionizing Radiation, Report E.88.IX.7, United Nations, New York, 1988. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources, Effects and Risks of Ionizing Radiation, United Nations, New York, 1993. U.S. Nuclear Regulatory Commission Regulatory Guide 8.29, Instruction Concerning Risks from Occupational Radiation Exposure. February 1996. ## **Appendix E: Notice of Availability** | • | ٠ | ø | | |---|---|---|---| | | 7 | C | • | | _ | 7 | | | #### CHARLESTON NEWSPAPERS P.O. Box 2993 Charleston, West
Virginia 25330 Billing 348-4898 Classified 348-4848 1-800-WVA-NEWS #### LEGAL ADVERTISING INVOICE | INVOICE DATE | 09/15/08 | |--------------|-----------| | ACCOUNT NBR | 028974105 | | SALES REP ID | 0022 | | INVOICE NBR | 534391001 | BILLED CALIFORNIA NEWSPAPER SERVICE P.O. BOX 60460 LOS ANGELES CA 90060 USA Please return this portion with your payment. Make checks payable to: Charleston Newspapers AMOUNT PAID: #### CHARLESTON NEWSPAPERS P.O. Box 2993 Charleston, West Virginia 25330 Billing 348-4898 Classified 348-4848 1-800-WVA-NEWS Legal pricing is based upon 63 words per column inch. FEIN 55-0676079 Legal pricing is based upon 63 words per column inch. Each successive insertion is discounted by 25% of the first insertion rate. The Daily Mail rate is 8.13 per word, the Charleston Gazette rate is 8.14 per word, and the Metro Putnam rate is 8.13 per word. | DATE: | A 3
29.20 | et h | Selection (1997) | ST G 802 / 4 | to torores | GIAU RIA | 65.16 | College Awarded | HE - AMOUNT | |-------|--------------|------|------------------|--------------|------------|----------|-------|-----------------|-------------| | | | | , | | | | | | | | | | | , | , | | * | | | | | | TOTAL INVOICE | AMOUNT | | | | | 154.34 | | NOTICE OF
AVAILABILITY
SUBJECT: Draft Envi-
romental Assessment
(DEA) | PROJECT: Deployment
of a High Energy Mobile
X-Ray Inspection System
of the Port of Charleston
Charleston County, South
Carolina | This notice is to Information that Day and | The DEA and firstructures are statement and the statement are statement and the statement are statement and the statement are statement as a sta | William Standard Strong, William S. C. 2442, No Mildan S. 2444, No De Common | The DEA will be ovoiled be for a dadry review be planing September 5 and ending officers of the commendation of the commendation of the commendation of the comments co | 0
1,2016 | |---|--|--|--|--
--|----------------------------| | 1 | | A 0 0 0 0 0 0 8 2 6 2 6 | | Notary Public | 09/10/08
C of Kanawha County, W | 09/12/08
//est Virginia | ## **Appendix F: Response to Public Comments** No comments were received during the public review and comment period.